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ABSTRACT 
We have been working on a technology model to support the 
preservation and reliable access of long term digital archives. The 
model is built around a layered object architecture involving 
modular, extensible components that can gracefully adapt to the 
evolving technology, standards, and protocols. This has led to the 
development of methodologies, tools and services to handle a 
number of core requirements of long term digital archives. 
Specifically, we have built flexible tools for implementing general 
ingestion workflows, active monitoring and auditing of the 
archive’s collections to ensure their long-term availability and 
integrity, storage organization and indexing to optimize access. 
These tools are platform and architecture independent, and have 
been tested using a wide variety of collections on heterogeneous 
computing platforms. In this paper, we will primarily focus on 
describing the underpinnings of our software called ACE 
(Auditing Control Environment), and report on its performance on 
a large scale distributed environment called Chronopolis. Built on 
top of rigorous cryptographic techniques, ACE provides a policy-
driven, scalable environment to monitor and audit the archive’s 
contents in a cost effective way. In addition, we will briefly 
introduce some our recent efforts to deal with storage 
organization and access of web archives. 

Long term preservation is a process that must begin before an 
object is ingested into the archive and must remain active 
throughout the lifetime of the archive. The ACE tool provides a 
very flexible environment to actively monitor and audit the 
contents of a digital archive throughout its lifetime, so as to 
ensure the availability and integrity of the archive’s holdings with 
extremely high probability. ACE is based on rigorous 
cryptographic techniques, and enables periodic auditing of the 
archive’s holdings at the granularity and frequency set by the 
manager of the archive. The scheme is cost effective and very 
general, does not depend on the archive’s architecture, and can 
detect any alterations, including alterations made by a malicious 
user. ACE can gracefully adapt to format migrations and changes 

to the archive’s policies. 

Categories and Subject Descriptors 
H.3.4 [Information Storage and Retrieval]: Systems and 
Software; H.3.6 [Information Storage and Retrieval]: Library 
Automation; H.3.7 [Information Storage and Retrieval]: Digital 
Libraries 

General Terms 
Algorithms, Management, Measurement, Performance, Design, 
Human Factors, Verification. 

Keywords 
Digital archiving, digital preservation, data integrity, web 
archiving, information discovery and access. 

1. INTRODUCTION 
The issue of long-term preservation of digital information has 
received considerable attention by major archiving communities, 
library organizations, government agencies, scientific 
communities, and individual researchers. Major challenges of 
long term digital preservation include the development of 
institutional and business models, technology infrastructure, and 
social and legal frameworks, which need to be addressed to 
achieve long-term reliable access of digital information. At the 
same time, a significant number of initiatives have been set up to 
develop technology prototypes to deal with various types of 
immediate needs and to address some of the long term challenges. 
These initiatives include the Internet Archive [2], the Electronic 
Records Archive program at the National Archives [1], the 
Library of Congress National Digital Information Infrastructure 
and Preservation (NDIIPP) [3], the DSpace project [13], the 
Fedora project [9, 12], the National Library of Australia’s 
PANDORA project [4], LOCKSS [10], PORTICO [5], and the 
Transcontinental Persistent Archives Prototype (TPAP) [6].  

Current proposed technical approaches developed through these 
prototypes provide functionalities such as tools for curation and 
ingestion, some approaches for dealing with format obsolescence, 
replication through a distributed infrastructure, and digital library 
type tools for access. In spite of these advances, systematic 
methodologies to deal with core infrastructure requirements are 
still lacking. These requirements include: 
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• Each preserved digital object should encapsulate information 
regarding content, structure, context, provenance, and access 
to enable the long term maintenance and lifecycle 
management of the digital object. 

• Efficient management of technology evolution, both 
hardware and software, and the appropriate handling of 
technology obsolescence (for example, format 
obsolescence). 

• Efficient risk management and disaster recovery mechanisms 
either from technology degradation and failure, or natural 
disasters such as fires, floods, and hurricanes, or human-
induced operational errors, or security breaches. 

• Efficient mechanisms to ensure the availability and integrity 
of content, context, and structure of archived information 
throughout the preservation period. 

• Ability for information discovery and content access and 
presentation, with an automatic enforcement of authorization 
and IP rights, throughout the lifecycle of each object. 

• Scalability in terms of ingestion rate, capacity and 
processing power to manage and preserve large scale 
heterogeneous collections of complex objects, and the speed 
at which users can discover and retrieve information. 

• Ability to accommodate possible changes over time in 
organizational structures and stewardships, relocation, 
repurposing, and reclassification. 

We have developed systematic technical approaches to deal 
with some of the core issues stated above, and recently released a 
number of related tools and services. Our overarching framework, 
called ADAPT (Approach to Digital Archiving and Preservation 
Technology), is a model based on a layered, digital object 
architecture that includes a set of modular tools and services built 
upon open standards and web technologies. These tools are 
designed so that they can easily accommodate new standards and 
policies while gracefully adapting to the underlying technologies 
as they evolve. Our tools include: 

• Producer – Archive Workflow Network (PAWN) [14]. This is 
a mature software platform that is quite flexible in 
implementing distributed ingestion and processing 
workflows into a centralized or distributed archive. This 
software was developed in collabroation with the National 
Archives and Records Administration (NARA) to manage 
large scale distributed ingestion from widely distributed 
producers. PAWN presents a secure and reliable 
environment that enables distributed producers to easily 
prepare and submit their records to the archive, while the 
system automatically provides packaging and context, as 
well as, allow automated processing chains to be defined and 
executed on PAWN objects. PAWN has been tested 
extensively on the TPAP grid for ingesting and organizing a 
wide variety of records including NARA and SLAC records. 
Many groups have expressed interest in PAWN including the 
Library of Congress and several NDIIPP partners. 

• Auditing Control Environment (ACE) [15]. We have 
developed a systematic method based on rigorous 
cryptographic techniques, which will actively monitor and 

audit the archive’s contents to ensure the availability and 
integrity of each object in the archive. ACE Version 1.0 was 
released in October 2008 after extensive tests conducted 
through the Chronopolis project. More details about ACE 
and some of the experimental results will be presented later 
in this paper. 

• Space Organization and Indexing for Web Archiving. The 
web has become the main medium for publishing 
information covering almost every facet of human activities 
but the web is an ephemeral medium whose contents are 
constantly changing. Web contents present unique challenges 
well beyond those encountered in typical archives due to 
their highly dynamic state, the underlying linking structures, 
and the widely heterogeneous types of contents. We have 
developed tools to organize and index web contents to be 
archived in such a way to enable compact space usage and 
fast exploration of archived web contents within a temporal 
context.  

• Information Discovery, Access and Presentation. We have 
recently introduced methodologies for the effective 
exploration and information discovery of a web archive, 
including the ability to browse the contents within a temporal 
context, and to generate effective summarization of available 
temporal contents that satisfy the user’s query. In particular, 
we have extended information retrieval techniques to include 
temporal contexts seamlessly into the web archiving 
architecture.  Our focus has been on high level, temporal 
search, and on possible ways of presenting the matching 
results so as to enhance exploration of archived web 
contents. 

2. BENCHMARKS AND TESTBEDS 
We have used a wide variety of collections to test and validate our 
tools and services. These collections were managed by several 
archiving environments, including the following two distributed 
environments. 

• Transcontinental Persistent Archives Platform (TPAP). This 
distributed storage environment is a collaboration between 
the San Diego Supercomputer Center (SDSC), the University 
of Maryland, and the National Archives. The main goal of 
this project is to demonstrate the use of data grid technology 
in support of digital archiving in a distributed environment, 
which includes the management of significant NARA-
selected collections across the three main sites at SDSC, 
University of Maryland (UMD), and NARA. Over 5TB of 
data were managed by the TPAP environment, which was 
supported by a federation of the Storage Resource Broker 
(SRB) data grid middleware. PAWN was used on the TPAP 
environment for ingesting and organizing a wide variety of 
collections including NARA and SLAC records. Another 
tool developed by our group, Replication Monitoring Portal, 
was extensively used to audit the state of replication for 
various collections in TPAP. 

• The Chronopolis Environment. Chronopolis is a 
geographically distributed archiving environment, built on 
top of substantial storage residing at SDSC, UMD, and the 
National Center for Atmospheric Research (NCAR), which 
is actively managed by preservation tools and services. 



Chronopolis is currently managing substantial collections 
from the NDIIPP partners, including the California Digital 
Library (CDL) Web-at-Risk collection, the InterUniversity 
Consortium for Political and Social Research (ICPSR) 
collection, and collections from the Scripps Institution of 
Oceanography – Geological Data Center (SI-GDC), and 
North Carolina Geospatial Data Archiving Project (NC 
State). Chronopolis has been using ACE to monitor and audit 
these collections for almost a year.  

3. ACE – ACTIVE MONITORING AND 
AUDITING OF DIGITAL COLLECTIONS 
3.1 Background 
Digital information is in general very fragile and can easily be 
altered resulting in changes that are very hard to detect in general. 
There are many potential risks that range from hardware and 
software failures to major technology changes rendering current 
software and hardware unusable, to the every growing number of 
computer security breaches. Note also that most of an archive’s 
holdings may be accessed very infrequently, and hence several 
cycles of technology evolution may occur in between accesses, 
thereby causing corrupted files to go undetected until it is too late 
to fix the problem. Other potential long-term risks include 
operational errors (mishandling of the archive’s holdings by a 
staff member) and natural hazards and disasters such as fires and 
floods. Another significant risk, especially in the long term, is 
malicious alterations performed either by users internal or 
external to the archive. Malicious alterations are the hardest errors 
to detect. In fact, most of these risks may cause unnoticeable 
changes to the archive, which may last for a long time before they 
are detected. Two additional factors complicate matters further. 
First, a number of transformations may be applied to a digital 
object during its lifetime. For example, format obsolescence can 
lead to a a migration of the current holdings in the obsolescent 
format to a new format. Therefore information stored about the 
old version of the object needs to be updated appropriately. 
Second, cryptographic techniques, used by all current integrity 
checking mechanisms, are likely to become less immune to 
potential attacks over time, and hence they will need to be 
replaced by stronger techniques. Therefore these two problems 
need to be also addressed in any approach to ensure the integrity 
of a digital archive.  

3.2 Core Technical Principles 
All known approaches to manage the integrity of a digital archive 
revolve around the following three techniques. 

• A majority voting scheme using replicated copies of the 
object or their hashes. 

• Build a directory containing the hash values of all the 
archived objects. To audit an object, compute its hash value 
and compare it to the stored value in the directory. 

• Using a Public Key Infrastructure (PKI), create a digital 
signature of the object and save it in the archive. The 
auditing process involves the use of the public key of the 
archive or a third party depending on the scheme used. 

As we have argued in [15], each of these schemes has significant 
limitations that render them unsuitable for long term archives.  

Before describing our approach, we informally introduce the 
notion of a cryptographic hash function. Essentially such a 
function takes an arbitrarily long bit string and apply a certain 
mathematical function that generates a fixed length bit string 
called the hash value or digest of the object. The main 
characteristic of the function is that it is easy to apply, but it is 
computationally infeasible to determine an input string for a given 
hash value. Another related property is the following fact. Given 
an input string, it is computationally infeasible to construct 
another different string with the same hash value. A complication 
about using hashing functions is that there are no known functions 
that can be shown to satisfy the properties stated above. However 
there are several hash functions (MD5, SHA-1, SHA-256, and 
RIPEMD-160) that have been in widespread use even though we 
cannot prove the computational infeasibility mentioned above. 
The starting point of our approach is the scheme based on the 
storage of the hash values of all the objects in a directory. Hence 
the auditing of an object consists of computing the hash value of 
the object followed by a comparison with the stored value. This 
scheme will work correctly as long as the stored hash values are 
kept intact, and the hashing scheme used remains secure. This 
approach is not strong enough to satisfactorily manage the 
integrity of long-term digital archives for the following reasons. 
First, a malicious user can easily modify the object and its stored 
hash value since the hash function is known, in which case the 
scheme will not be able to detect the alterations made to the 
object. Second, we note the fact that the number of hash values 
grow linearly with the number of archived objects, and hence 
ensuring the integrity of all the hash values amounts to a non-
trivial problem that is, in many ways, very similar to the initial 
problem we are trying to solve.  

Our approach reduces the number of hash values to a very small 
set of hash values called “witnesses,” essentially one per day 
which amounts to a total size of around 100KB per year 
regardless of the number of objects stored in the archive. The 
correctness of our scheme depends only on maintaining the 
integrity of the witnesses. Any alteration to an object, whether 
malicious or otherwise, will be detected using one of the witness 
values. Given the small-size of the witness values, they can be 
easily saved on read-only media such as papers or archival quality 
read-only optical media (with periodic refreshing of the contents). 
To make this approach practical, we need an easy way to link a 
digital object to the corresponding witness value. We provide the 
details next. 

We organize the processing of the objects to be monitored and 
audited into rounds, each round defined by a temporal index. 
During each round, the digests of all the objects being processed 
are aggregated into a single hash value, called the round summary 
value. There are many possible schemes that can be used to 
perform the aggregation, the simplest of which is to process the 
digests in sequence, concatenating the previous hash value with 
the running round summary value, and applying the hash function 
to the concatenated string to update the round summary value. 
However in our method, we make use of the Merkle tree [11], 
which works as follows (see Figure 1). The digests of all the 
objects being processed in a round form the leaves of a balanced 
binary tree such as the value stored at each internal node is the 
hash value of the concatenated values stored at the children. The 
value computed at the root of the tree determines the round hash 



value. Given the properties of a hash function, a change to any of 
the objects being processed during a round will immediately 
result in a different round hash value with extremely high 
probability.  

 
Figure 1. Merkle Tree 

We now introduce the notion of the proof of the digest of an 
object. Given an object that is represented by a leaf of the Merkle 
tree, the proof is the sequence of the hash values of the siblings of 
all the nodes on the unique path from the leaf to the root. Note 
that the number of hash values defining the proof is logarithmic in 
the total number of objects processed during a round, and hence 
will be quite small in general. In our scheme, each round is 
restricted to a maximum time interval, and will be indexed by a 
time stamp. Hence the total number of round hash values depends 
on the total number of active rounds and not on the total number 
of objects. To track the correspondence between an object and the 
corresponding round hash value, we create an integrity token for 
each object, which contains the corresponding round proof and its 
temporal index (time stamp). An alteration of the object can be 
detected by using its integrity token to compute the corresponding 
round hash value, and comparing it with the stored round hash 
value.  

We re-iterate the process by aggregating the sequence of round 
hash values generated each day using the Merkle tree scheme. 
The root hash value defines the witness for that day. Any 
alterations in the object will result with very high probability to a 
different witness value.  

In summary, our scheme is based on processing the objects, in 
temporarily-indexed rounds to compute the round summary 
values, and then combine all these values generated during a 
single day into one hash value, called the witness for that day. An 
alteration to an object can be detected by using its integrity token 
to compute the corresponding round hash value, followed by 
computing the corresponding witness value using the proof of the 
round hash value. The resulting witness value will be different 
with extremely high probability than the stored witness value, if 
the original object has been modified. 

This approach, coupled with a strategy to proactively monitor and 
audit the holdings of a digital archive, was implemented in a 
software system called ACE. We will provide an overview of the 
ACE software architecture, and outline its basic functionality in 
the remainder of this section 

3.3 Basic ACE Architecture 
The basic ACE architecture consists of two main components, a 
local component called Audit Manager (AM) that can be 
configured at the archive to monitor and audit local data, and a 
third-party component called Integrity Management Component 
(IMC) that can generate integrity tokens and round hash values 
upon requests from the archive. An IMS can support multiple 
archives, including distributed archives. The IMS not only 
generates the integrity tokens, but also maintains a database of the 
round hash values, as well as generating the daily witness values. 
The IMS is an independent entity whose function is to handle 
requests from an archive, which typical includes the hash of the 
object but not the object itself or a time stamp. The IMS is very 
simple to implement, and is not assumed to be fully trusted (and 
hence can itself be audited if necessary). In ACE, each integrity 
token contains several pieces of information in addition to the 
proof and the time stamp, such as the ID of the hash algorithm 
used by the IMS (which could be different than the hash function 
used by the archive), and the last time the object was audited. The 
AM forms a bridging component with the IMS, whose function is 
to send requests to the IMS to generate integrity tokens for a 
number of objects, and requests for the round hash value 
corresponding to a particular time stamp. Figure 2 shows the 
overall ACE architecture of the general case of different archives 
being supported by a single IMS. 

Integrity Management System
(IMS)

Audit Manger
(AM)

Archiving
Node

Archiving
Node

Audit Manger
(AM)

 
Figure 2. ACE Architecture 

3.4 ACE Workflow 
In this section, we discuss a typical workflow with ACE, which 
includes two main operations: registration and auditing as 
described next. 

3.4.1 Registration of Objects into ACE 
For each object to be registered into ACE, the audit manager 
creates a registration request and submits it to the IMS. The IMS 
aggregates all the requests for the round and returns the integrity 
token of the object to the requesting AM. In the meantime, the 
IMS runs a continuous series of aggregation rounds, each round 
closing either when the round receives the maximum number of 
registration requests, or when the maximum amount of time 
allocated for a round is reached, whichever comes first. These 
parameters are assigned by the IMS administrator. However this 
round interval policy can be overridden through a special object 
registration request, which forces the current run to immediately 



close and return an integrity token. Object registration requests 
received during a round are aggregated together along with a 
number of random values through the Merkle tree. The random 
values are added as necessary to ensure a minimum number of 
participants in a round. The resulting round hash value is 
managed internally within the IMS, and the integrity token is 
issued to each AM who participated in that round (that is, the 
audit managers who sent requests during the round).  
The IMS constructs daily a witness value using the hash round 
values of the day, and sends the witness value to all the 
participating archives as well as store the value on a reliable read-
only medium. These witness values are cryptographically 
dependent on the round hash values, similar to the dependence of 
each round hash value on the digests of the objects participating 
in the same round. Copies of the witness values are stored on 
reliable read-only media at the various archives.  

3.4.2 The ACE Auditing Process 
ACE Version 1.0 can be configured to monitor and audit the 
archive’s holdings by the manager of the archive. The periodic 
auditing policy can be set either at the object level or collection 
level. For example, a policy for a certain collection could involve 
auditing all the objects in the collection every three months, while 
the policy set for another collection could require auditing all the 
objects in that collection every six months. A default policy (audit 
every six months) will be set during registration time unless the 
archive manager overrides the default setting. In addition, the 
auditing process could be invoked by the manager or authorized 
users at any time on any object. 
The process of auditing an object O consists of the following 
steps. 
1. The audit manager computes the hash value of O and 

retrieves its integrity token. 
2. Using the computed hash value of O and the proof contained 

in the integrity token, the audit manager computes the round 
hash value.  

3. Using the round time stamp contained in the integrity token, 
the audit manager requests the corresponding round hash 
value from the IMS. 

4. The audit manager successfully terminates the auditing 
process if the computed hash value in Step 1. is equal to the 
hash value stored in the integrity token, and the two round 
hash values computed in Steps 2 and 3 are equal. Otherwise, 
it sends an error alert to the archive manager. 

Note that the successful termination of the auditing process 
establishes the correctness of the object and its integrity token 
with extremely high probability given the properties of the hash 
functions. However occasionally we may want to apply a stronger 
auditing process, independent of the trustworthiness of the archive 
and the IMS.  
An independent auditor can request the proof of the round hash 
value from the archive and the proof of the corresponding daily 
witness value from the IMS. Using these two values, the 
independent auditor can easily compute the value of the witness 
value, which is then compared to the stored value on the reliable 
read-only media. If the two values are equal, then the object is 
intact and both the archive and the IMS can be trusted. A failure 

of this process will automatically invalidate the object under 
consideration 

3.5 Audit Manager 
The ACE Audit Manager is a web application designed to be 
installed locally at an archive. It provides an easy-to-use portal 
that will provide an overview of the collections registered into 
ACE, manage all the ACE audit operations, and provide detailed 
logging of the status of all monitored items. In addition, it has 
been designed to monitor multiple collections across different 
types of storage. A screenshot of an Audit Manager installed on 
the Chronopolis environment is shown in Figure 3.  
 

 
 

Figure 3. Audit Manager Screenshot 
 

3.6 Audit Manager Performance 
ACE Version 1.0 has been used extensively on the TPAP and the 
Chronopolis testbeds. We focus here on the performance achieved 
within the Chronopolis environment. ACE has been deployed on 
that environment for nine months, working almost flawlessly 
during that period. The current default auditing policy is to audit 
files at the University of Maryland every 30 days. Table 1 
illustrates the performance of a single audit manager on the 
collections audited at the University of Maryland, amounting to 
approximately 6 million files. A large fraction of the time is the 
result of the Storage Resource Broker overhead, and the overall 
time is dominated by the time to access the collections across the 
network. 

 

 

 

 



Table 1. Audit Manager Performance 

Collection No. of 
Files Size (GB) Audit Time 

(hh:mm) 
CDL 46,762 4,291 20:32 

SIO-GDC 197,718 815 6:49 

ICPSR 4,830,625 6,957 122:48 

NC State 608,424 5,465 32:14 
 
During the auditing of the CDL collection, a single audit manager 
was able to run at the rate of about 60 MB per second on average, 
almost fully utilizing the file transfer bandwidth available. For the 
other collections, where there were many small files, the audit 
speed was further limited by the overhead accessing each file. For 
example, on the ICPSR collection, the audit manager ran at the 
rate of 13 MB per second, having to open up each of about 4.8 
million files. These results indicate that the actual time spent by 
an audit manager to perform the core auditing process is quite 
small – in fact so small as to be effectively hidden by the 
unavoidable overhead for accessing the collections. We note that 
multiple audit managers can be run concurrently on different 
collections to increase the performance almost linearly as long as 
the network bandwidth can support the simultaneous access to the 
collections. 
A benchmark driver has been developed to help eliminate 
bottlenecks in the Audit Manager. Two tests were performed; first 
a collection containing 1.25 million digests was simulated and 
registered in ACE. Digests were not actually generated, but rather 
simulated. ACE still requested tokens, performed logging, and 
registered items as if it were a real collection. Registration took 3 
hours, 6 minutes with a sustained rate of 112 objects per second 
being registered. An audit of the registered collection was 
completed in 1hour, 17m showing an audit rate of 270.6 objects 
per second. 
The test was re-run with 1.25 million 1MB simulated files to see 
how the digest algorithm would affect ACE performance. For this 
test, computing the digest and registration were performed 
serially; for all production ACE drivers, computing the digest is 
performed in parallel with registration. Registration took 6 hours, 
7 m for a sustained rate of 56.8 objects/s and 56MB/s. A 
subsequent audit was performed in 4 hours, 30 minutes for a 
combined rate of 77.2 objects/s and 77.2MB/s. Subtracting the 
ACE overhead, computing the digests was achieved at the rate of 
a little over 110MB/s. 
While there is certainly room for further optimization of the ACE 
audit manager, comparing the benchmarks with throughputs from 
the Chronopolis archive shows that even for the fastest collection, 
the Audit Manager was bottlenecked by the underlying storage 
system. 

4. WEB ARCHIVING 
A recent major thrust of our group has been on the storage 
organization and indexing of web objects for fast information 
retrieval and access to web archives. The web has become the 
main medium that holds information regarding almost every facet 
of human activities worldwide. However the web is an ephemeral 
medium whose contents are constantly disappearing, sometimes 
shortly after they have appeared. Moreover, the web is the only 

medium where a substantial amount of important information is 
being published, and hence unless we actively archive the critical 
information, we may suffer a permanent loss of part of our 
cultural and scientific heritage on a regular basis. 
Our work has dealt with some of the technical challenges facing 
the organization, preservation, and access of web archives. Web 
contents present unique challenges well beyond those encountered 
in other types of archives. To start with, a web object is usually 
not well-delineated because of all the links that it contains, which 
makes it hard to determine the boundaries of a web object. Add to 
that the fact that many web objects contain highly dynamic 
contents that change at unpredictable rate, and the fact that a large 
fraction of the web contents reside in the deep or hidden web, and 
hence cannot be extracted through the typical web crawling 
process. 

4.1 Storage Organization and Indexing for 
Fast Access 
The most popular method currently in use by most web archives, 
including the Internet Archive, stores a multitude of small web 
objects into relatively large containers. An emerging standard for 
such containers is the WARC format [7]. Typically, an external 
indexing server is maintained to provide the mapping between 
hyperlinks inside a WARC file and the location of the archived 
object that the hyperlinks point to. In [18], we addressed the 
problem of storing and indexing web contents using the crawling 
strategy but avoiding the storage of any duplicate web contents 
examined between two consecutive crawls. We developed a new 
scheme that achieves precisely this goal while ensuring quick 
access to the archived contents based on a temporal query 
covering any period during the archival time span. The scheme, 
called PISA – Persistent Indexing Structure for Archives - 
involves a novel indexing structure based on the concept of multi-
version B-tree and a very efficient duplicate detection algorithm.  

To illustrate the benefits of our scheme, we ran two types of 
experiments. The first type dealt with   the impact of the duplicate 
elimination, and the other type dealt with the performance of our 
scheme versus that of the standard B+-Tree. For the first type of 
tests, we chose two datasets from the Stanford’s WebBase project 
– a news web archive, and a governors’ web archive to represent 
respectively fast-changing websites, and relatively static websites.  
For the second set of tests, we used the governor’s web archive 
that happened to have more crawl dates (thus more versions) than 
the news web archive, and hence presented an opportunity to 
illustrate performance on temporal queries. 
The results of the first set of tests showed that 82% of the 
archived web pages in the governors’ web archive were duplicates. 
We, therefore, could save about 73% of storage space with our 
scheme. For the fast-changing news web archive, we could still 
see 23% of the archived web pages were duplicates, which 
accounted for 12% in storage space. 
The second set of tests separately indexed the governors’ web 
archive using B+-Tree, and PISA, and ran several access 
operations (inserts, and several temporal and non-temporal 
queries) on each index. The result showed a substantial 
performance gain for some important temporal operations. For 
example, we saw as much as ten times faster performance for 
time-slice queries (“get all web pages that were valid at a certain 
time point”). We are currently in the process of testing this 



scheme on several terabytes of web archive data in collaboration 
with the Internet Archive and the Library of Congress. 

4.2 Efficient Exploration of Archived Web 
Contents 
The conventional way of constructing WARC containers does not 
take into consideration the linking relationships among the web 
objects stored across multiple containers. This conventional way 
is to store the web objects as they are crawled into a container 
until the container is full. Although this method is simple, it can 
result in performance bottlenecks when users navigate through the 
archived web objects that are stored in many different containers. 
In [16], we addressed the problem of how to organize the web 
objects across multiple containers so that we will be able to 
navigate through the linking structure of the web objects as 
efficiently as possible. In particular, we considered a web graph 
where each constituent web page is represented by a vertex, and 
each incoming/outgoing link corresponds to a directed edge. 
Given a web graph, we use a variant of the PageRank algorithm 
[8] to assign each edge a weight according to its chance to be 
taken in a browsing session. The weighted web graph is then 
partitioned in such a way to minimize the amount of overhead 
required to navigate through the archived pages. 
In order to evaluate our approach, we ran empirical tests on two 
datasets. The first is the web graph of the University of Maryland 
Institute for Advanced Computer Studies (UMIACS) web site, 
located at http://umiacs.umd.edu domain. We crawled every Web 
page within a five-hop distance (or depth) under this domain, and 
constructed the web graph corresponding to this crawling. The 
second dataset is the Stanford web graph which was generated 
from a crawl of the stanford.edu domain created by the Stanford 
WebBase project. Over each data set, we ran 1000 random walk 
sessions and counted the number of containers each session 
needed to retrieve. 
In the tests, we observed that when the graph partitioning scheme 
is used, most random walks only needed to access very few 
containers. Our method reduced the average number of containers 
from five to one for the UMIACS web graph, and seven to four 
for the Stanford web graph. 

4.3 Information Discovery, Retrieval and 
Presentation of Archived Web Contents 
The holdings of a web archive are highly temporal since each 
archived object is only valid for a fixed time span. Therefore, web 
archives should be organized to support search and information 
exploration within a temporal context.  In this ongoing work [17], 
we consider the mechanisms needed to enable information 
exploration, search, and access of archived web contents within a 
temporal context while effectively handling the highly 
unstructured, complex contents and their linking structures, all 
typically at very large scale.  
In developing our strategy, we consider some of the most notable 
approaches currently adopted in existing web archives, and 
identify their limitations. The main approach used by The 
Wayback Machine (Internet Archive), is to list archived web 
pages chronologically based on a specific URL provided by the 
user. However, requiring prior knowledge of the URL or even 
specific information about the contents of a web site, severely 
limits the future use of the archive. Note that even if the URL is 

currently well-known, this specific URL may be completely 
forgotten in the future. 
Another approach categorizes contents into a hierarchy through 
which users can navigate down until the desired object is found. 
Some web archives, such as the Minerva project of the Library of 
Congress, have taken this approach for some of its collections, 
such as the United States presidential election of 2000 that has 
about 800 sites archived daily between August 1, 2000 and 
January 21, 2001. However, as the size of the collection becomes 
enormous, the categorization becomes almost impossible and not 
effective.  
The last, and the most promising, approach provides full-text 
search capability, based on an extension of information retrieval 
techniques. An example can be found in the open source 
archiving project WERA. Although more realistic and effective, 
current information retrieval strategies do not take into account 
temporal contexts, nor do they appropriately handle the evolution 
of the importance of a web page over time. For example, they fail 
to consider the fact that a page that contains “September 11” can 
be totally irrelevant to the September 11 Attack if the page was 
only valid before 2001. 
In this ongoing work, we are developing methodologies for the 
effective exploration and information discovery of a web archive, 
including the ability to browse the contents within a temporal 
context, and to generate effective summarization of available 
temporal contents that satisfy the user’s query. In particular, we 
extend information retrieval techniques to include temporal 
contexts seamlessly into the architecture.  In [17], we present 
initial results using high level, temporal search, as well as, include 
possible ways of presenting the matching results so as to enhance 
exploration of archived web contents. 

5. CONCLUSION 
In this paper, we have provided an overview of our overall 
technology model to support long term digital archives. Of 
particular importance to us has been the development of sound 
technical approaches to ensure the integrity of and reliable access 
to the holdings of a digital archive. The realization of these 
technical approaches has been based on the development of 
configurable, extensible, modular components, which can adapt 
gracefully in a cost effective way as newer technologies, 
standards, and protocols emerge. Given the critical importance to 
proactively monitor the archive’s holdings, we have presented the 
underpinnings of ACE – a cost effective software system that can 
ensure the integrity of long term archives – and which has been 
tested and validated in a large scale distributed environment. We 
also provided of some of our current efforts to deal with 
organization and access of archives dealing with web contents. 
Given the dominant role of the web as the publication medium of 
information related to almost all major human activities, web 
archives will become the major source of historical information in 
the future. Our focus there is in enabling information discovery 
and mining for a large scale web archive within a temporal 
context. 
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