
Tools and Services for Long-Term Preservation of Digital
Archives

Joseph JaJa
Institute for Advanced Computer

Studies
University of Maryland

College Park, MD. 20742

joseph@umiacs.umd.edu

Mike Smorul
Institute for Advanced Computer

Studies
University of Maryland

College Park, MD. 20742

toaster@umiacs.umd.edu

Sangchul Song
Department of Electrical and

Computer Engineering
University of Maryland

College Park, MD. 20742

scsong@umd.edu

ABSTRACT
We have been working on a technology model to support the
preservation and reliable access of long term digital archives. The
model is built around a layered object architecture involving
modular, extensible components that can gracefully adapt to the
evolving technology, standards, and protocols. This has led to the
development of methodologies, tools and services to handle a
number of core requirements of long term digital archives.
Specifically, we have built flexible tools for implementing general
ingestion workflows, active monitoring and auditing of the
archive’s collections to ensure their long-term availability and
integrity, storage organization and indexing to optimize access.
These tools are platform and architecture independent, and have
been tested using a wide variety of collections on heterogeneous
computing platforms. In this paper, we will primarily focus on
describing the underpinnings of our software called ACE
(Auditing Control Environment), and report on its performance on
a large scale distributed environment called Chronopolis. Built on
top of rigorous cryptographic techniques, ACE provides a policy-
driven, scalable environment to monitor and audit the archive’s
contents in a cost effective way. In addition, we will briefly
introduce some our recent efforts to deal with storage
organization and access of web archives.

Long term preservation is a process that must begin before an
object is ingested into the archive and must remain active
throughout the lifetime of the archive. The ACE tool provides a
very flexible environment to actively monitor and audit the
contents of a digital archive throughout its lifetime, so as to
ensure the availability and integrity of the archive’s holdings with
extremely high probability. ACE is based on rigorous
cryptographic techniques, and enables periodic auditing of the
archive’s holdings at the granularity and frequency set by the
manager of the archive. The scheme is cost effective and very
general, does not depend on the archive’s architecture, and can
detect any alterations, including alterations made by a malicious
user. ACE can gracefully adapt to format migrations and changes

to the archive’s policies.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software; H.3.6 [Information Storage and Retrieval]: Library
Automation; H.3.7 [Information Storage and Retrieval]: Digital
Libraries

General Terms
Algorithms, Management, Measurement, Performance, Design,
Human Factors, Verification.

Keywords
Digital archiving, digital preservation, data integrity, web
archiving, information discovery and access.

1. INTRODUCTION
The issue of long-term preservation of digital information has
received considerable attention by major archiving communities,
library organizations, government agencies, scientific
communities, and individual researchers. Major challenges of
long term digital preservation include the development of
institutional and business models, technology infrastructure, and
social and legal frameworks, which need to be addressed to
achieve long-term reliable access of digital information. At the
same time, a significant number of initiatives have been set up to
develop technology prototypes to deal with various types of
immediate needs and to address some of the long term challenges.
These initiatives include the Internet Archive [2], the Electronic
Records Archive program at the National Archives [1], the
Library of Congress National Digital Information Infrastructure
and Preservation (NDIIPP) [3], the DSpace project [13], the
Fedora project [9, 12], the National Library of Australia’s
PANDORA project [4], LOCKSS [10], PORTICO [5], and the
Transcontinental Persistent Archives Prototype (TPAP) [6].

Current proposed technical approaches developed through these
prototypes provide functionalities such as tools for curation and
ingestion, some approaches for dealing with format obsolescence,
replication through a distributed infrastructure, and digital library
type tools for access. In spite of these advances, systematic
methodologies to deal with core infrastructure requirements are
still lacking. These requirements include:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Proceedings of the Indo-USWorkshop on International Trends in Digital
Preservation, March 24-25, 2009, Pune, India.

• Each preserved digital object should encapsulate information
regarding content, structure, context, provenance, and access
to enable the long term maintenance and lifecycle
management of the digital object.

• Efficient management of technology evolution, both
hardware and software, and the appropriate handling of
technology obsolescence (for example, format
obsolescence).

• Efficient risk management and disaster recovery mechanisms
either from technology degradation and failure, or natural
disasters such as fires, floods, and hurricanes, or human-
induced operational errors, or security breaches.

• Efficient mechanisms to ensure the availability and integrity
of content, context, and structure of archived information
throughout the preservation period.

• Ability for information discovery and content access and
presentation, with an automatic enforcement of authorization
and IP rights, throughout the lifecycle of each object.

• Scalability in terms of ingestion rate, capacity and
processing power to manage and preserve large scale
heterogeneous collections of complex objects, and the speed
at which users can discover and retrieve information.

• Ability to accommodate possible changes over time in
organizational structures and stewardships, relocation,
repurposing, and reclassification.

We have developed systematic technical approaches to deal
with some of the core issues stated above, and recently released a
number of related tools and services. Our overarching framework,
called ADAPT (Approach to Digital Archiving and Preservation
Technology), is a model based on a layered, digital object
architecture that includes a set of modular tools and services built
upon open standards and web technologies. These tools are
designed so that they can easily accommodate new standards and
policies while gracefully adapting to the underlying technologies
as they evolve. Our tools include:

• Producer – Archive Workflow Network (PAWN) [14]. This is
a mature software platform that is quite flexible in
implementing distributed ingestion and processing
workflows into a centralized or distributed archive. This
software was developed in collabroation with the National
Archives and Records Administration (NARA) to manage
large scale distributed ingestion from widely distributed
producers. PAWN presents a secure and reliable
environment that enables distributed producers to easily
prepare and submit their records to the archive, while the
system automatically provides packaging and context, as
well as, allow automated processing chains to be defined and
executed on PAWN objects. PAWN has been tested
extensively on the TPAP grid for ingesting and organizing a
wide variety of records including NARA and SLAC records.
Many groups have expressed interest in PAWN including the
Library of Congress and several NDIIPP partners.

• Auditing Control Environment (ACE) [15]. We have
developed a systematic method based on rigorous
cryptographic techniques, which will actively monitor and

audit the archive’s contents to ensure the availability and
integrity of each object in the archive. ACE Version 1.0 was
released in October 2008 after extensive tests conducted
through the Chronopolis project. More details about ACE
and some of the experimental results will be presented later
in this paper.

• Space Organization and Indexing for Web Archiving. The
web has become the main medium for publishing
information covering almost every facet of human activities
but the web is an ephemeral medium whose contents are
constantly changing. Web contents present unique challenges
well beyond those encountered in typical archives due to
their highly dynamic state, the underlying linking structures,
and the widely heterogeneous types of contents. We have
developed tools to organize and index web contents to be
archived in such a way to enable compact space usage and
fast exploration of archived web contents within a temporal
context.

• Information Discovery, Access and Presentation. We have
recently introduced methodologies for the effective
exploration and information discovery of a web archive,
including the ability to browse the contents within a temporal
context, and to generate effective summarization of available
temporal contents that satisfy the user’s query. In particular,
we have extended information retrieval techniques to include
temporal contexts seamlessly into the web archiving
architecture. Our focus has been on high level, temporal
search, and on possible ways of presenting the matching
results so as to enhance exploration of archived web
contents.

2. BENCHMARKS AND TESTBEDS
We have used a wide variety of collections to test and validate our
tools and services. These collections were managed by several
archiving environments, including the following two distributed
environments.

• Transcontinental Persistent Archives Platform (TPAP). This
distributed storage environment is a collaboration between
the San Diego Supercomputer Center (SDSC), the University
of Maryland, and the National Archives. The main goal of
this project is to demonstrate the use of data grid technology
in support of digital archiving in a distributed environment,
which includes the management of significant NARA-
selected collections across the three main sites at SDSC,
University of Maryland (UMD), and NARA. Over 5TB of
data were managed by the TPAP environment, which was
supported by a federation of the Storage Resource Broker
(SRB) data grid middleware. PAWN was used on the TPAP
environment for ingesting and organizing a wide variety of
collections including NARA and SLAC records. Another
tool developed by our group, Replication Monitoring Portal,
was extensively used to audit the state of replication for
various collections in TPAP.

• The Chronopolis Environment. Chronopolis is a
geographically distributed archiving environment, built on
top of substantial storage residing at SDSC, UMD, and the
National Center for Atmospheric Research (NCAR), which
is actively managed by preservation tools and services.

Chronopolis is currently managing substantial collections
from the NDIIPP partners, including the California Digital
Library (CDL) Web-at-Risk collection, the InterUniversity
Consortium for Political and Social Research (ICPSR)
collection, and collections from the Scripps Institution of
Oceanography – Geological Data Center (SI-GDC), and
North Carolina Geospatial Data Archiving Project (NC
State). Chronopolis has been using ACE to monitor and audit
these collections for almost a year.

3. ACE – ACTIVE MONITORING AND
AUDITING OF DIGITAL COLLECTIONS
3.1 Background
Digital information is in general very fragile and can easily be
altered resulting in changes that are very hard to detect in general.
There are many potential risks that range from hardware and
software failures to major technology changes rendering current
software and hardware unusable, to the every growing number of
computer security breaches. Note also that most of an archive’s
holdings may be accessed very infrequently, and hence several
cycles of technology evolution may occur in between accesses,
thereby causing corrupted files to go undetected until it is too late
to fix the problem. Other potential long-term risks include
operational errors (mishandling of the archive’s holdings by a
staff member) and natural hazards and disasters such as fires and
floods. Another significant risk, especially in the long term, is
malicious alterations performed either by users internal or
external to the archive. Malicious alterations are the hardest errors
to detect. In fact, most of these risks may cause unnoticeable
changes to the archive, which may last for a long time before they
are detected. Two additional factors complicate matters further.
First, a number of transformations may be applied to a digital
object during its lifetime. For example, format obsolescence can
lead to a a migration of the current holdings in the obsolescent
format to a new format. Therefore information stored about the
old version of the object needs to be updated appropriately.
Second, cryptographic techniques, used by all current integrity
checking mechanisms, are likely to become less immune to
potential attacks over time, and hence they will need to be
replaced by stronger techniques. Therefore these two problems
need to be also addressed in any approach to ensure the integrity
of a digital archive.

3.2 Core Technical Principles
All known approaches to manage the integrity of a digital archive
revolve around the following three techniques.

• A majority voting scheme using replicated copies of the
object or their hashes.

• Build a directory containing the hash values of all the
archived objects. To audit an object, compute its hash value
and compare it to the stored value in the directory.

• Using a Public Key Infrastructure (PKI), create a digital
signature of the object and save it in the archive. The
auditing process involves the use of the public key of the
archive or a third party depending on the scheme used.

As we have argued in [15], each of these schemes has significant
limitations that render them unsuitable for long term archives.

Before describing our approach, we informally introduce the
notion of a cryptographic hash function. Essentially such a
function takes an arbitrarily long bit string and apply a certain
mathematical function that generates a fixed length bit string
called the hash value or digest of the object. The main
characteristic of the function is that it is easy to apply, but it is
computationally infeasible to determine an input string for a given
hash value. Another related property is the following fact. Given
an input string, it is computationally infeasible to construct
another different string with the same hash value. A complication
about using hashing functions is that there are no known functions
that can be shown to satisfy the properties stated above. However
there are several hash functions (MD5, SHA-1, SHA-256, and
RIPEMD-160) that have been in widespread use even though we
cannot prove the computational infeasibility mentioned above.
The starting point of our approach is the scheme based on the
storage of the hash values of all the objects in a directory. Hence
the auditing of an object consists of computing the hash value of
the object followed by a comparison with the stored value. This
scheme will work correctly as long as the stored hash values are
kept intact, and the hashing scheme used remains secure. This
approach is not strong enough to satisfactorily manage the
integrity of long-term digital archives for the following reasons.
First, a malicious user can easily modify the object and its stored
hash value since the hash function is known, in which case the
scheme will not be able to detect the alterations made to the
object. Second, we note the fact that the number of hash values
grow linearly with the number of archived objects, and hence
ensuring the integrity of all the hash values amounts to a non-
trivial problem that is, in many ways, very similar to the initial
problem we are trying to solve.

Our approach reduces the number of hash values to a very small
set of hash values called “witnesses,” essentially one per day
which amounts to a total size of around 100KB per year
regardless of the number of objects stored in the archive. The
correctness of our scheme depends only on maintaining the
integrity of the witnesses. Any alteration to an object, whether
malicious or otherwise, will be detected using one of the witness
values. Given the small-size of the witness values, they can be
easily saved on read-only media such as papers or archival quality
read-only optical media (with periodic refreshing of the contents).
To make this approach practical, we need an easy way to link a
digital object to the corresponding witness value. We provide the
details next.

We organize the processing of the objects to be monitored and
audited into rounds, each round defined by a temporal index.
During each round, the digests of all the objects being processed
are aggregated into a single hash value, called the round summary
value. There are many possible schemes that can be used to
perform the aggregation, the simplest of which is to process the
digests in sequence, concatenating the previous hash value with
the running round summary value, and applying the hash function
to the concatenated string to update the round summary value.
However in our method, we make use of the Merkle tree [11],
which works as follows (see Figure 1). The digests of all the
objects being processed in a round form the leaves of a balanced
binary tree such as the value stored at each internal node is the
hash value of the concatenated values stored at the children. The
value computed at the root of the tree determines the round hash

value. Given the properties of a hash function, a change to any of
the objects being processed during a round will immediately
result in a different round hash value with extremely high
probability.

Figure 1. Merkle Tree

We now introduce the notion of the proof of the digest of an
object. Given an object that is represented by a leaf of the Merkle
tree, the proof is the sequence of the hash values of the siblings of
all the nodes on the unique path from the leaf to the root. Note
that the number of hash values defining the proof is logarithmic in
the total number of objects processed during a round, and hence
will be quite small in general. In our scheme, each round is
restricted to a maximum time interval, and will be indexed by a
time stamp. Hence the total number of round hash values depends
on the total number of active rounds and not on the total number
of objects. To track the correspondence between an object and the
corresponding round hash value, we create an integrity token for
each object, which contains the corresponding round proof and its
temporal index (time stamp). An alteration of the object can be
detected by using its integrity token to compute the corresponding
round hash value, and comparing it with the stored round hash
value.

We re-iterate the process by aggregating the sequence of round
hash values generated each day using the Merkle tree scheme.
The root hash value defines the witness for that day. Any
alterations in the object will result with very high probability to a
different witness value.

In summary, our scheme is based on processing the objects, in
temporarily-indexed rounds to compute the round summary
values, and then combine all these values generated during a
single day into one hash value, called the witness for that day. An
alteration to an object can be detected by using its integrity token
to compute the corresponding round hash value, followed by
computing the corresponding witness value using the proof of the
round hash value. The resulting witness value will be different
with extremely high probability than the stored witness value, if
the original object has been modified.

This approach, coupled with a strategy to proactively monitor and
audit the holdings of a digital archive, was implemented in a
software system called ACE. We will provide an overview of the
ACE software architecture, and outline its basic functionality in
the remainder of this section

3.3 Basic ACE Architecture
The basic ACE architecture consists of two main components, a
local component called Audit Manager (AM) that can be
configured at the archive to monitor and audit local data, and a
third-party component called Integrity Management Component
(IMC) that can generate integrity tokens and round hash values
upon requests from the archive. An IMS can support multiple
archives, including distributed archives. The IMS not only
generates the integrity tokens, but also maintains a database of the
round hash values, as well as generating the daily witness values.
The IMS is an independent entity whose function is to handle
requests from an archive, which typical includes the hash of the
object but not the object itself or a time stamp. The IMS is very
simple to implement, and is not assumed to be fully trusted (and
hence can itself be audited if necessary). In ACE, each integrity
token contains several pieces of information in addition to the
proof and the time stamp, such as the ID of the hash algorithm
used by the IMS (which could be different than the hash function
used by the archive), and the last time the object was audited. The
AM forms a bridging component with the IMS, whose function is
to send requests to the IMS to generate integrity tokens for a
number of objects, and requests for the round hash value
corresponding to a particular time stamp. Figure 2 shows the
overall ACE architecture of the general case of different archives
being supported by a single IMS.

Integrity Management System
(IMS)

Audit Manger
(AM)

Archiving
Node

Archiving
Node

Audit Manger
(AM)

Figure 2. ACE Architecture

3.4 ACE Workflow
In this section, we discuss a typical workflow with ACE, which
includes two main operations: registration and auditing as
described next.

3.4.1 Registration of Objects into ACE
For each object to be registered into ACE, the audit manager
creates a registration request and submits it to the IMS. The IMS
aggregates all the requests for the round and returns the integrity
token of the object to the requesting AM. In the meantime, the
IMS runs a continuous series of aggregation rounds, each round
closing either when the round receives the maximum number of
registration requests, or when the maximum amount of time
allocated for a round is reached, whichever comes first. These
parameters are assigned by the IMS administrator. However this
round interval policy can be overridden through a special object
registration request, which forces the current run to immediately

close and return an integrity token. Object registration requests
received during a round are aggregated together along with a
number of random values through the Merkle tree. The random
values are added as necessary to ensure a minimum number of
participants in a round. The resulting round hash value is
managed internally within the IMS, and the integrity token is
issued to each AM who participated in that round (that is, the
audit managers who sent requests during the round).
The IMS constructs daily a witness value using the hash round
values of the day, and sends the witness value to all the
participating archives as well as store the value on a reliable read-
only medium. These witness values are cryptographically
dependent on the round hash values, similar to the dependence of
each round hash value on the digests of the objects participating
in the same round. Copies of the witness values are stored on
reliable read-only media at the various archives.

3.4.2 The ACE Auditing Process
ACE Version 1.0 can be configured to monitor and audit the
archive’s holdings by the manager of the archive. The periodic
auditing policy can be set either at the object level or collection
level. For example, a policy for a certain collection could involve
auditing all the objects in the collection every three months, while
the policy set for another collection could require auditing all the
objects in that collection every six months. A default policy (audit
every six months) will be set during registration time unless the
archive manager overrides the default setting. In addition, the
auditing process could be invoked by the manager or authorized
users at any time on any object.
The process of auditing an object O consists of the following
steps.
1. The audit manager computes the hash value of O and

retrieves its integrity token.
2. Using the computed hash value of O and the proof contained

in the integrity token, the audit manager computes the round
hash value.

3. Using the round time stamp contained in the integrity token,
the audit manager requests the corresponding round hash
value from the IMS.

4. The audit manager successfully terminates the auditing
process if the computed hash value in Step 1. is equal to the
hash value stored in the integrity token, and the two round
hash values computed in Steps 2 and 3 are equal. Otherwise,
it sends an error alert to the archive manager.

Note that the successful termination of the auditing process
establishes the correctness of the object and its integrity token
with extremely high probability given the properties of the hash
functions. However occasionally we may want to apply a stronger
auditing process, independent of the trustworthiness of the archive
and the IMS.
An independent auditor can request the proof of the round hash
value from the archive and the proof of the corresponding daily
witness value from the IMS. Using these two values, the
independent auditor can easily compute the value of the witness
value, which is then compared to the stored value on the reliable
read-only media. If the two values are equal, then the object is
intact and both the archive and the IMS can be trusted. A failure

of this process will automatically invalidate the object under
consideration

3.5 Audit Manager
The ACE Audit Manager is a web application designed to be
installed locally at an archive. It provides an easy-to-use portal
that will provide an overview of the collections registered into
ACE, manage all the ACE audit operations, and provide detailed
logging of the status of all monitored items. In addition, it has
been designed to monitor multiple collections across different
types of storage. A screenshot of an Audit Manager installed on
the Chronopolis environment is shown in Figure 3.

Figure 3. Audit Manager Screenshot

3.6 Audit Manager Performance
ACE Version 1.0 has been used extensively on the TPAP and the
Chronopolis testbeds. We focus here on the performance achieved
within the Chronopolis environment. ACE has been deployed on
that environment for nine months, working almost flawlessly
during that period. The current default auditing policy is to audit
files at the University of Maryland every 30 days. Table 1
illustrates the performance of a single audit manager on the
collections audited at the University of Maryland, amounting to
approximately 6 million files. A large fraction of the time is the
result of the Storage Resource Broker overhead, and the overall
time is dominated by the time to access the collections across the
network.

Table 1. Audit Manager Performance

Collection No. of
Files Size (GB) Audit Time

(hh:mm)
CDL 46,762 4,291 20:32

SIO-GDC 197,718 815 6:49

ICPSR 4,830,625 6,957 122:48

NC State 608,424 5,465 32:14

During the auditing of the CDL collection, a single audit manager
was able to run at the rate of about 60 MB per second on average,
almost fully utilizing the file transfer bandwidth available. For the
other collections, where there were many small files, the audit
speed was further limited by the overhead accessing each file. For
example, on the ICPSR collection, the audit manager ran at the
rate of 13 MB per second, having to open up each of about 4.8
million files. These results indicate that the actual time spent by
an audit manager to perform the core auditing process is quite
small – in fact so small as to be effectively hidden by the
unavoidable overhead for accessing the collections. We note that
multiple audit managers can be run concurrently on different
collections to increase the performance almost linearly as long as
the network bandwidth can support the simultaneous access to the
collections.
A benchmark driver has been developed to help eliminate
bottlenecks in the Audit Manager. Two tests were performed; first
a collection containing 1.25 million digests was simulated and
registered in ACE. Digests were not actually generated, but rather
simulated. ACE still requested tokens, performed logging, and
registered items as if it were a real collection. Registration took 3
hours, 6 minutes with a sustained rate of 112 objects per second
being registered. An audit of the registered collection was
completed in 1hour, 17m showing an audit rate of 270.6 objects
per second.
The test was re-run with 1.25 million 1MB simulated files to see
how the digest algorithm would affect ACE performance. For this
test, computing the digest and registration were performed
serially; for all production ACE drivers, computing the digest is
performed in parallel with registration. Registration took 6 hours,
7 m for a sustained rate of 56.8 objects/s and 56MB/s. A
subsequent audit was performed in 4 hours, 30 minutes for a
combined rate of 77.2 objects/s and 77.2MB/s. Subtracting the
ACE overhead, computing the digests was achieved at the rate of
a little over 110MB/s.
While there is certainly room for further optimization of the ACE
audit manager, comparing the benchmarks with throughputs from
the Chronopolis archive shows that even for the fastest collection,
the Audit Manager was bottlenecked by the underlying storage
system.

4. WEB ARCHIVING
A recent major thrust of our group has been on the storage
organization and indexing of web objects for fast information
retrieval and access to web archives. The web has become the
main medium that holds information regarding almost every facet
of human activities worldwide. However the web is an ephemeral
medium whose contents are constantly disappearing, sometimes
shortly after they have appeared. Moreover, the web is the only

medium where a substantial amount of important information is
being published, and hence unless we actively archive the critical
information, we may suffer a permanent loss of part of our
cultural and scientific heritage on a regular basis.
Our work has dealt with some of the technical challenges facing
the organization, preservation, and access of web archives. Web
contents present unique challenges well beyond those encountered
in other types of archives. To start with, a web object is usually
not well-delineated because of all the links that it contains, which
makes it hard to determine the boundaries of a web object. Add to
that the fact that many web objects contain highly dynamic
contents that change at unpredictable rate, and the fact that a large
fraction of the web contents reside in the deep or hidden web, and
hence cannot be extracted through the typical web crawling
process.

4.1 Storage Organization and Indexing for
Fast Access
The most popular method currently in use by most web archives,
including the Internet Archive, stores a multitude of small web
objects into relatively large containers. An emerging standard for
such containers is the WARC format [7]. Typically, an external
indexing server is maintained to provide the mapping between
hyperlinks inside a WARC file and the location of the archived
object that the hyperlinks point to. In [18], we addressed the
problem of storing and indexing web contents using the crawling
strategy but avoiding the storage of any duplicate web contents
examined between two consecutive crawls. We developed a new
scheme that achieves precisely this goal while ensuring quick
access to the archived contents based on a temporal query
covering any period during the archival time span. The scheme,
called PISA – Persistent Indexing Structure for Archives -
involves a novel indexing structure based on the concept of multi-
version B-tree and a very efficient duplicate detection algorithm.

To illustrate the benefits of our scheme, we ran two types of
experiments. The first type dealt with the impact of the duplicate
elimination, and the other type dealt with the performance of our
scheme versus that of the standard B+-Tree. For the first type of
tests, we chose two datasets from the Stanford’s WebBase project
– a news web archive, and a governors’ web archive to represent
respectively fast-changing websites, and relatively static websites.
For the second set of tests, we used the governor’s web archive
that happened to have more crawl dates (thus more versions) than
the news web archive, and hence presented an opportunity to
illustrate performance on temporal queries.
The results of the first set of tests showed that 82% of the
archived web pages in the governors’ web archive were duplicates.
We, therefore, could save about 73% of storage space with our
scheme. For the fast-changing news web archive, we could still
see 23% of the archived web pages were duplicates, which
accounted for 12% in storage space.
The second set of tests separately indexed the governors’ web
archive using B+-Tree, and PISA, and ran several access
operations (inserts, and several temporal and non-temporal
queries) on each index. The result showed a substantial
performance gain for some important temporal operations. For
example, we saw as much as ten times faster performance for
time-slice queries (“get all web pages that were valid at a certain
time point”). We are currently in the process of testing this

scheme on several terabytes of web archive data in collaboration
with the Internet Archive and the Library of Congress.

4.2 Efficient Exploration of Archived Web
Contents
The conventional way of constructing WARC containers does not
take into consideration the linking relationships among the web
objects stored across multiple containers. This conventional way
is to store the web objects as they are crawled into a container
until the container is full. Although this method is simple, it can
result in performance bottlenecks when users navigate through the
archived web objects that are stored in many different containers.
In [16], we addressed the problem of how to organize the web
objects across multiple containers so that we will be able to
navigate through the linking structure of the web objects as
efficiently as possible. In particular, we considered a web graph
where each constituent web page is represented by a vertex, and
each incoming/outgoing link corresponds to a directed edge.
Given a web graph, we use a variant of the PageRank algorithm
[8] to assign each edge a weight according to its chance to be
taken in a browsing session. The weighted web graph is then
partitioned in such a way to minimize the amount of overhead
required to navigate through the archived pages.
In order to evaluate our approach, we ran empirical tests on two
datasets. The first is the web graph of the University of Maryland
Institute for Advanced Computer Studies (UMIACS) web site,
located at http://umiacs.umd.edu domain. We crawled every Web
page within a five-hop distance (or depth) under this domain, and
constructed the web graph corresponding to this crawling. The
second dataset is the Stanford web graph which was generated
from a crawl of the stanford.edu domain created by the Stanford
WebBase project. Over each data set, we ran 1000 random walk
sessions and counted the number of containers each session
needed to retrieve.
In the tests, we observed that when the graph partitioning scheme
is used, most random walks only needed to access very few
containers. Our method reduced the average number of containers
from five to one for the UMIACS web graph, and seven to four
for the Stanford web graph.

4.3 Information Discovery, Retrieval and
Presentation of Archived Web Contents
The holdings of a web archive are highly temporal since each
archived object is only valid for a fixed time span. Therefore, web
archives should be organized to support search and information
exploration within a temporal context. In this ongoing work [17],
we consider the mechanisms needed to enable information
exploration, search, and access of archived web contents within a
temporal context while effectively handling the highly
unstructured, complex contents and their linking structures, all
typically at very large scale.
In developing our strategy, we consider some of the most notable
approaches currently adopted in existing web archives, and
identify their limitations. The main approach used by The
Wayback Machine (Internet Archive), is to list archived web
pages chronologically based on a specific URL provided by the
user. However, requiring prior knowledge of the URL or even
specific information about the contents of a web site, severely
limits the future use of the archive. Note that even if the URL is

currently well-known, this specific URL may be completely
forgotten in the future.
Another approach categorizes contents into a hierarchy through
which users can navigate down until the desired object is found.
Some web archives, such as the Minerva project of the Library of
Congress, have taken this approach for some of its collections,
such as the United States presidential election of 2000 that has
about 800 sites archived daily between August 1, 2000 and
January 21, 2001. However, as the size of the collection becomes
enormous, the categorization becomes almost impossible and not
effective.
The last, and the most promising, approach provides full-text
search capability, based on an extension of information retrieval
techniques. An example can be found in the open source
archiving project WERA. Although more realistic and effective,
current information retrieval strategies do not take into account
temporal contexts, nor do they appropriately handle the evolution
of the importance of a web page over time. For example, they fail
to consider the fact that a page that contains “September 11” can
be totally irrelevant to the September 11 Attack if the page was
only valid before 2001.
In this ongoing work, we are developing methodologies for the
effective exploration and information discovery of a web archive,
including the ability to browse the contents within a temporal
context, and to generate effective summarization of available
temporal contents that satisfy the user’s query. In particular, we
extend information retrieval techniques to include temporal
contexts seamlessly into the architecture. In [17], we present
initial results using high level, temporal search, as well as, include
possible ways of presenting the matching results so as to enhance
exploration of archived web contents.

5. CONCLUSION
In this paper, we have provided an overview of our overall
technology model to support long term digital archives. Of
particular importance to us has been the development of sound
technical approaches to ensure the integrity of and reliable access
to the holdings of a digital archive. The realization of these
technical approaches has been based on the development of
configurable, extensible, modular components, which can adapt
gracefully in a cost effective way as newer technologies,
standards, and protocols emerge. Given the critical importance to
proactively monitor the archive’s holdings, we have presented the
underpinnings of ACE – a cost effective software system that can
ensure the integrity of long term archives – and which has been
tested and validated in a large scale distributed environment. We
also provided of some of our current efforts to deal with
organization and access of archives dealing with web contents.
Given the dominant role of the web as the publication medium of
information related to almost all major human activities, web
archives will become the major source of historical information in
the future. Our focus there is in enabling information discovery
and mining for a large scale web archive within a temporal
context.

6. ACKNOWLEDGMENTS
Our thanks to the Library of Congress under the NDIIPP program,
the National Archives and Records Administration under the
Electronics Record Archive program, the National Science

Foundation, the Internet Archive, the Mellon Foundation, and the
University of Maryland for partially supporting several
components of our research program as articulated in this paper.

7. REFERENCES
[1] The Electronic Records Archive (ERA), the National

Archives and Records Administration. URL:
http://www.archives.gov/era. Accessed:2008-06-09
(Archived at: http://www.webcitation.org/5YSZCfoK5).

[2] The Internet Archive: The Wayback Machine. 2008 URL:
http://www.archive.org/index.php. Accessed:December 11
2008 (Archived at: http://www.webcitation.org/5SCSL2r8e).

[3] The National Digital Information Infrastructure and
Preservation Program, the Library of Congress. URL:
http://www.digitalpreservation.gov/. Accessed:June 9 2008
(Archived at: http://www.webcitation.org/5YSZBCgxW).

[4] Pandora - Austrailia's Web Archive. URL:
http://pandora.nla.gov.au/. Accessed:April 22 2008
(Archived at: http://www.webcitation.org/5XHOp9Kso).

[5] PORTICO. URL: http://www.portico.org/. Accessed:Feb 10
2009.

[6] The Transcontinental Persistent Archives Prototype (TPAP).
URL: http://www.archives.gov/era/research/tpap.html.
Accessed:2009-02-13 (Archived at:
http://www.webcitation.org/5eYpbiKsy).

[7] WARC, Web ARChive file format. URL:
http://www.digitalpreservation.gov/formats/fdd/fdd000236.s
html. Accessed:December 15 2008 (Archived at:
http://www.webcitation.org/5d5ZyngyG).

[8] Brin, S. and L. Page. The anatomy of a large-scale
hypertextual Web search engine. in Proceedings of
Proceedings of the Seventh International Conference on
World Wide Web 7. 1998. Brisbane, Australia: Elsevier
Science Publishers B. V.

[9] Lagoze, C., et al., Fedora: an architecture for complex
objects and their relationships. International Journal on
Digital Libraries, 2006. 6(2): p. 124-138.

[10] Maniatis, P., et al., The LOCKSS peer-to-peer digital
preservation system. ACM Trans. Comput. Syst., 2005.
23(1): p. 2-50.

[11] Merkle, R.C. Protocols for Public Key Cryptosystems. in
Proceedings of IEEE Symposium on Security and Privacy.
1980.

[12] Payette, S. and C. Lagoze. Flexible and Extensible Digital
Object and Repository Architecture (FEDORA). in
Proceedings of ECDL '98. 1998. Heraklion, Crete, Greece:
Springer-Verlag.

[13] Smith, M., et al., DSpace: An Open Source Dynamic Digital
Repository, in D-Lib Magazine. 2003.

[14] Smorul, M., M. McGann, and J. JaJa. PAWN: A Policy-
Driven Environment for Implementing Producer-Archive
Interactions in Support of Long Term Digital Preservation.
in Proceedings of Archiving 2007. 2007: IS&T.

[15] Song, S. and J. JaJa. ACE: A Novel Software Platform to
Ensure the Integrity of Long Term Archives. in Proceedings
of Archiving 2007. 2007: IS&T.

[16] Song, S. and J. JaJa. Fast Browsing of Archived Web
Contents. in Proceedings of the 8th International Web
Archiving Workshop (IWAW 2008). 2008. Aarhus, Denmark.

[17] Song, S. and J. JaJa. Search and Access Strategies for Web
Archives. in Proceedings of Archiving 2009 (to appear).
2009. Arlington, VA: IS&T.

[18] Song, S. and J. JaJa, Web Archiving: Organizing Web
Objects into Web Containers to Optimize Access (UMIACS
Technical Report No. UMIACS-TR-2007-42). 2007,
University of Maryland Institute for Advanced Computer
Studies: College Park, MD.

