
Fast Browsing of Archived Web Contents
Sangchul Song

Department of Electrical and Computer Engineering
Institute for Advanced Computer Studies

University of Maryland, College Park
+1-301-405-7092

scsong@umd.edu

Joseph JaJa
Department of Electrical and Computer Engineering

Institute for Advanced Computer Studies
University of Maryland, College Park

+1-301-405-6722

joseph@umiacs.umd.edu

ABSTRACT
The web is becoming the preferred medium for communicating
and storing information pertaining to almost any human activity.
However it is an ephemeral medium whose contents are
constantly changing, resulting in a permanent loss of part of our
cultural and scientific heritage on a regular basis. Archiving
important web contents is a very challenging technical problem
due to its tremendous scale and complex structure, extremely
dynamic nature, and its rich heterogeneous and deep contents. In
this paper, we consider the problem of archiving a linked set of
web objects into web containers in such a way as to minimize the
number of containers accessed during a browsing session. We
develop a method that makes use of link analysis and optimized
graph partitioning to enable faster browsing of archived web
contents. Our overall methodology is very general and can be
used to optimize different browsing patterns. We include
simulation results that illustrate the performance of our scheme
and compare it to the common scheme currently used to organize
web objects into web containers.

Categories and Subject Descriptors
H.3.2 [Information Storage and Retrieval]: Information Storage
– file organization; H.3.7 [Information Storage and Retrieval]:
Digital Libraries; H.3.4 [Information Storage and Retrieval]:
Systems and Software

General Terms
Algorithms, Design, Performance, Experimentation

Keywords
Digital archives, web archiving, link analysis, graph partitioning

1. INTRODUCTION
An unprecedented amount of information encompassing almost
every facet of human activity across the world is currently
available on the web and is growing at an extremely fast pace. In
many cases, the web is the only medium where such information
is recorded. However, the web is an ephemeral medium whose
contents are constantly changing and new information is rapidly
replacing old information, resulting in the disappearance of a
large number of web pages every day and in a permanent loss of
part of our cultural and scientific heritage on a regular basis. A

number of efforts, currently underway, are trying to develop
methodologies and tools for capturing and archiving some of the
web’s contents that are deemed critical. However there are major
technical, social, and political challenges that are confronting
these efforts. Major technical challenges include automatic tools
to identify, find, and collect web contents to be archived,
automatic extraction of metadata and context for such contents
including linking structures that are inherent to the web, the
organization and indexing of the data and the metadata, and the
development of preservation and access mechanisms for current
and future users, all at unprecedented scale and complexity.

Leaving aside dynamic and deep contents, web contents involve a
wide variety of objects such as html pages, documents,
multimedia files, scripts, etc., as well as, linking structures
involving these objects. While the size of most web pages is
small, the total number of web pages on a single web site can
range from one to several millions. For example, as of Oct 30,
2006, Wikipedia.org alone claims to have about 1.4 million
articles [7], each making up a distinct web page. A critical piece
of web archiving is to capture the linking structures and organize
the archived pages in such a way that future generations of users
will be able to access and navigate through the archived web
information in the same way as in the original linked structure.
Note that by that time, the archived web contents may have
migrated through several generations of hardware and software
upgrades, including migration through different types of media,
different file systems, and different formats.

In this paper, we address the problem of how to organize the web
objects so that we will be able to navigate through the linking
structure of the web objects as effectively as possible. Since the
majority of web pages tend to be small, they are typically
aggregated into relatively large containers as the objects are
accessed during the crawling process. An emerging standard for
such containers is the WARC format [3], which evolved from the
ARC container format developed by the Internet Archive,
currently the world’s largest internet archive. Moreover, many
web crawlers and access tools, Heritrix [29], NutchWAX [2],
Wayback [5], WAXToolbar [4] and Wera[6], assume this format.

Given a set of WARC containers that hold an archived linked set
of web objects, a future browsing process of the archived objects
starts with a web object defined by a seed link, followed by
navigation through the linked structure until the desired web
object is found. Our goal is to organize the web objects into
containers so as to minimize the number of containers needed to
complete a typical browsing process. We develop an algorithm
that assigns web objects to containers by performing an initial
link analysis on the given linked structure, followed by a
partitioning process that leads to an efficient solution to this

This work is licensed under an Attribution-NonCommercial-NoDerivs
2.0 France Creative Commons License.
IWAW ’08, September 18–19, 2008, Aarhus, Denmark.

problem. We show that our method enables effective navigation
through the archived linked structure and compare its
performance to the dominant scheme in use today.

We start in Section 2 by describing the previous work related to
our problem, followed by developing and justifying our method in
Section 3. We apply our method to two web site examples and
examine the performance gains achieved by our method in
Section 4. We conclude in Section 5.

2. RELATED WORK
We review in this section the possible storage formats for
archiving web contents and a couple of techniques in link analysis
and graph partitioning which will form the core of our method.

2.1 Archival Storage
In order to organize and store web objects in an archive, several
methods have been proposed and are currently in use. A
straightforward method (such as the one implemented in [1]) is
based on using the local file system where the target web material
is copied object by object to the local file system, maintaining the
relative structure among the objects. For future access, the html
tag ‘file’ can replace the ‘http’ tag in the original object. We can
then use the local file system for navigation through the archived
web material. For example, ‘http://www.example.org/index.html’
can be rewritten as ‘file:///archive/2007.08.01/www.example.org/
index.html’. It is relatively easy to set up and run this type of web
archiving and the retrieval process is carried out using local file
access mechanisms. However, there are several problems in using
this method for web archiving including its limited scalability to
what the local file system can handle, and the difficulty to
preserve the contents over time as they are tightly coupled to the
specific file system. Moreover, this strategy requires
modifications to the original contents, and thus the strict
faithfulness to the original contents cannot be maintained in most
cases [26].
The second approach extracts documents from the hypertext
context and reorganizes them in a different format while setting
up different access mechanisms. For example, a small set of web
pages can be converted into a single PDF document. However,
this strategy makes sense mainly for specific objects that were
originally created independently of the web. Although it is
possible to maintain the hypertext structure within the converted
documents, for the broader range archiving, this approach loses
the hypertext structure between multiple such documents.
The most popular method currently in use by most web archives,
including the Internet Archive, stores web objects in WARC [3]
container files. A WARC file holds a set of harvested web files,
each with its own auxiliary metadata. The size of a WARC file
can vary up to hundreds of megabytes (usually 100~500MB).
Typically, an external indexing server is maintained to provide
the mapping between hyperlinks inside a WARC file and the
location of the archived object that the hyperlinks point to. For
example, if, inside a WARC file, there is a web page archived on
September 24, 2007 which has an outgoing hyper link with a tag
, the
indexing server could return in response to the tag and date
something like ‘20070924082031-00007.warc’ and ‘1463539’
which are the WARC file name and the offset in the WARC file,
respectively. In this paper, we will also assume that web files are

placed in such containers such that a certain upper bound on the
size of the container is assumed.

2.2 Graph Partitioning Techniques
Web material can be considered as a graph (web graph) where
each constituent web page is represented by a vertex, and each
incoming/outgoing link corresponds to a directed edge. Once
represented as a graph, the web graph can be partitioned into
multiple subgraphs using one of existing graph partitioning
techniques. The basic goal of a minimum edge-cut partitioning is
to minimize some defined cost on the edges connecting the
partitions. There are many ways to define the external cost of
graph partitioning but the two notions most widely used are the
maximum weight of the edges between vertices which lie on
different partitions, and the total weight of all the edges
connecting distinct partitions. Although the graph partitioning
problem is known to be NP-complete, many heuristic algorithms
have been developed which find very good partitions in practice
[10, 11, 16-19, 22, 24, 27, 28, 32]. However, for our application,
we will require additional constraints, which cannot necessarily
be handled by many of the well-known graph partitioning
algorithms. We review here some of the algorithms that can be
used to solve our graph partitioning problem that will be defined
formally in Section 3.
Perhaps the best known graph partitioning algorithm is the
Kerninghan-Lin algorithm [24], where the partitioning process
starts with an arbitrary partition, and then proceeds to decrease
the external cost by a series of interchanges of subsets of the
partitions repeatedly until no further improvement is possible. To
avoid local optimality, the algorithm is applied repeatedly to
obtain a number of locally optimum partitions among which the
best partition is chosen. Although Fiduccia and Mattheyses [12]
later improved the performance of the Kerninghan-Lin algorithm,
their algorithm is considered computationally expensive
especially if the graph is large, which is clearly the case for our
application.
In order to cope with large graphs, researchers devised multilevel
graph partitioning schemes [10, 11, 17, 22, 32] where the
algorithms reduce the size of the graph (or “coarsen” the graph)
by collapsing vertices and edges, partition the resulting smaller
graph, and then “uncoarsen” it to construct a partition for the
original graph. While the multilevel scheme was mainly
developed and used to improve the partitioning performance of a
large graph at the expense of worse partition quality [32], more
recent multilevel algorithms, such as in [10, 11, 17, 22], further
refine the partition during the uncoarsening phase, thus obtaining
a partition quality that is comparable or even better than other
existing techniques [19]. The Kerninghan-Lin algorithm is often
used as the refinement algorithm.

2.3 Link Analysis Technique - PageRank
PageRank [30] is a link analysis algorithm that assigns a
numerical weight to each element of a hyperlinked set of
documents, such as web material. Intuitively, a web page with a
higher PageRank should have a higher probability of being
visited. The intuition behind PageRank is that if page u has a link
to page v, then page u is implicitly conferring some importance to
page v. In other words, page u can be thought as voting for page v.
The more votes a page receives, the more important it is
considered. However, not every vote counts equally: votes cast by

pages that are themselves “important” weigh more heavily and
help other pages become more “important”.
In the ideal model, the PageRank value for page u, PR(u), can be
expressed as:

,)()(∑
∈

=
uIv

vu vPRpuPR

where Iu is the set of pages with links to page u, and Pvu is the
probability that a random surfer visiting page v jumps to page u.
Since it is not possible to know the exact value of Pvu, Pvu

is
usually set to 1/out_degree(v), that is, all outgoing links from v
are assumed to be equally likely.
However, the ideal model has two problems. The first problem is
the presence of dangling pages that shut the surfer when visited.
A solution to the problem is to patch dangling pages by
artificially placing outgoing links from each dangling page to all
the other pages. Each artificial link can be given either equal
probability of 1/N (N: total number of pages), or personalized
probability which records a generic surfer’s preference for each
page. The second problem with the ideal model is that the surfer
can get trapped by a cyclic path in the web graph. Brin and Page
[9] suggest enforcing irreducibility by adding a new set of
artificial transitions that, with low probability, jump to all nodes.
Mathematically, this corresponds to the following equation:

,)(1)(∑
∈

+
−

=
uIv

vu vPRpd
N

duPR

where N is the total number of pages, and d is the probability the
random surfer jumps to a random page without a link.
We note that this equation is slightly different from the original
PageRank equation as proposed by Brin and Page [9]. The
original equation, ∑

∈

+−=
uIv

vu vPRpdduPR)(1)(, has

brought up some confusion since, unlike the inventors’ claim, the
sum of all PageRanks is not one, but N. The above scaled version,
however, leads to ∑ =1)(vPR , and each PageRank can be

thought as a probability. In the above equation, the parameter d is
called the damping factor which can be set somewhere between 0
and 1. As suggested in [30] and [9], we use d = 0.85 in our work
which will be further described in the next section.
If we let G = (V, E) be a web graph, and A the modified
adjacency matrix of G defined by:

,
otherwise ,1

),(if ,1

⎪
⎪
⎩

⎪⎪
⎨

⎧

−

∈+
−

=

N
d

Eij
O
d

N
d

A j
ij

where is the number of out-links from page j.

If we also let P be an N-dimensional column vector of PageRank
values, then P can be expressed by the following matrix equation:
P = AP

This is the characteristic equation of the eigensystem whose
solution is the eigenvector corresponding to the eigenvalue of
one. Furthermore, A can be considered as a stochastic matrix that

is also irreducible and aperiodic, due to the modifications we
performed earlier to avoid dangling nodes and cyclic paths.
Therefore, by the Ergodic theorem of Markov chains [31], a finite
Markov chain defined by the stochastic transition matrix A has a
unique stationary probability distribution. This implies that,
starting with any initial value of P, we can iterate the application
of the matrix A to P, and P will converge to a steady-state
probability vector, which in turn is the eigenvector of A
corresponding to the eigenvalue of one. In practice, a well known
mathematical technique called power iteration [15] can be used to
efficiently determine P.
As will be discussed further in the next section, our link analysis
technique is based on the PageRank algorithm. However, unlike
the PageRank algorithm that assigns a weight to each page, we
assign a weight to each link, which will then be used to partition
the graph.

3. OUR METHOD
As discussed earlier, the most popular storage method for web
archiving is to use containers where each container holds a
number of web pages. Typically, web material is archived using
many containers. The primary goal of our work is to develop
techniques to allocate web pages to containers such that each
container has as closely related web pages as possible, thereby
minimizing the chances of accessing many different containers
when a user browses through the archived web material. When
web contents are archived in the form of multiple containers, we
can view these containers as a coarsened web graph (or container
graph) where the original nodes within the same container are
collapsed together to form a super node, and only edges between
different containers survive with assigned weights as will be
explained next.
In the container graph, Gc=(Vc, Ec), we define the cost of the
edge-cut, EC, as follows:

,∑
∈

=
cEe

ewEC

where we is the weight of edge e.
In order to accomplish our goal, we analyze the link structure
within the web material to be archived to find, for each edge, a
good estimate of the probability that the edge will be taken. Using
this estimate as the edge weight, we partition the web graph in
such a way as to minimize EC. The following two subsections
discuss our link analysis and the partitioning technique used to
minimize EC.

3.1 Edge Weight
Edge weights should represent the relative likelihood of an edge
being taken during a browsing session. In the live web, edges are
hyperlinks embedded in web pages, but in an archive, edges in the
web graph can also exist between two consecutive versions of a
web page. In order to assign edge weights, a link analysis is
performed. Before proceeding we note that our scheme will be
based on a browsing pattern similar to what is expected in today’s
live web. However it is easy to accommodate other access
patterns within our methodology using a different weight function
on the edges. For example, should browsing of successive
versions of a web page dominate, we will assign heavy weights to
the corresponding edges relative to the remaining edges.

Similarly, should the access pattern to subdomains of sites
dominate, the corresponding edge weights will be assigned high
values. For the rest of this paper, we are assuming an access
pattern similar to the one currently encountered on the live web.

We start with some simple observations. If a vertex has only one
outgoing edge, this edge will be more likely taken than an edge
from another vertex with many out-links, and thus should be
weighed more heavily. A possible simple solution is to assign
edge weights depending on the number of out-links of the source
vertex. For instance, if the source vertex of edge e has k outgoing
edges, the weight of 1/k is given to edge e.

When a personalized vector is not in use, the PageRank algorithm
also uses the same method in assigning edge weights. In this case,
the only deciding factor to the edge weight is the number of the
outgoing edges from the source vertex, and thus the edge weight
only represents the local probability of the edge being taken, once
the source vertex is visited. In other words, the edge weight is
only locally meaningful, and thus it is not possible to say that an
edge is more likely to be taken than the other if they belong to
different vertices.

For our method, the probability of each vertex being visited is
computed first using the PageRank algorithm. The PageRank
value (or steady-state probability) of each vertex is then divided
by the number of outgoing edges from the vertex. We call this
quotient EdgeRank (ER) and assign the same EdgeRank value as
the weight to every edge coming out from the same vertex.

,
)outdegree(

)()(
v

vPReER =

where vertex v is the source vertex of edge e.

Note that, since ∑ =1)(vPR , ∑ =1)(eER too.

Now that we have an edge-weighted graph representing our web
contents, the allocation of web pages to containers is performed
using a graph partitioning algorithm.

3.2 Graph Partitioning
As discussed in Section 2, there are a number of existing min-cut
graph partitioning heuristics that seem to work well in practice.
Although their primary partitioning criterion is to minimize the
cost of the edge-cut, they differ from one another in input, output,
and partitioning parameters. For example, some algorithms
support size-constrained partitioning while others do not. Also,
not all algorithms support weighted vertices and edges. Before
proceeding let’s define our graph partitioning problem more
formally.

Web Graph Partitioning Problem: Given a directed web graph
G:(V, E) with weighted nodes (weight of a node is the size of the
corresponding page) and weighted edges, determine a partition V
= P1 U P2 U P3 U … U Pn such that,

1. The sum of the weights of the edges that connect any two
different partitions is minimized.

2. For all i’s, |Pi| ≤ K for some fixed K, where |Pi| is the sum of
the weights of the vertices in the partition and K is an upper
bound on the size of a container.

The first condition is shared by almost all partitioning algorithms
(some require non-weighted edges), while the second condition,
which is the size constraint imposed to every partition, is
supported only by a few partitioning algorithms (such as [19, 21,
22]), sometimes with a slight modification.

In this work, we adopt the multilevel graph partitioning algorithm
to solve our problem. The primary reason is that it supports the
constraints on the partition size; moreover, the method is fast,
which is important in our case considering the typically large
sizes of web graphs. In particular, we adapt a partitioning
technique suggested by Karypis and Kumar [22] as follows.

Their scheme first computes a maximal matching using a
randomized algorithm, and coarsens the graph by collapsing the
matched vertices together. This coarsening step is repeated until a
desired size of the coarsened graph is achieved. Once the graph is
coarsened, the minimum edge-cut bisection is computed using
some of existing algorithms such as spectral bisection [8, 33],
geometric bisection [28] or combinatorial methods [13, 14, 24].
The partitioned graph is then refined and uncoarsened. The
improved Kerninghan-Lin algorithm that was developed by
Karypis and Kumar is applied to this uncoarsening-with-
refinement phase.

In particular, we use Metis [21], a partitioning tool that
implements the Karypis-Kumar scheme. Although Metis does not
explicitly support the partition size constraints – our second
condition, it does support vertex-weight-based size balancing
among partitions, making the size of all partitions similar.
Therefore, based on the sum of all the vertex weights of the web
graph, we pre-compute the necessary number of partitions before
running the partitioning tool, so that the resulting partitions will
meet the second condition.

4. EXPERIMENTAL EVALUATION OF
OUR SCHEME
In order to examine the performance of our algorithm in terms of
the number of containers accessed during a typical browsing
session, we consider two datasets. The first is the web graph of
the University of Maryland Institute for Advanced Computer
Studies (UMIACS) web site, located at http://umiacs.umd.edu
domain, which we call the UMIACS web graph. We crawled
every web page within five-hop distance (or depth) under this
domain, and constructed the web graph corresponding to this
crawling. The second dataset is the Stanford web graph which
was generated from a crawl of the stanford.edu domain created in
September 2002 by the Stanford WebBase project [20], and is
widely used by the web graph analysis community. Unlike the
first dataset, the Stanford web graph has neither the size
information of vertices, nor the actual URLs with which we might
have been able to obtain estimates of the web pages (which
undoubtedly have changed since then). Consequently, we
randomly assign vertex sizes using two Gaussian distributions –
one for html files, the other for non-html files. Their parameters
are based on the findings from a web statistics study [25]. In
particular, we assumed there are about 18% html objects by total
file size, and the average html file size is 605 KB. This size
modeling is not intended to mimic the actual web object sizes in
the Stanford web page. Rather, we intend to assign some
reasonable sizes to run our experiments. Note that the quality of

our method does not depend on the accuracy of the vertex sizes.
Table 1 describes these two datasets.

Table 1. The Two Datasets Used for Evaluating Our Method

Datasets # Vertices # Edges Total Vertex
W i htUMIACS Web

Graph
4579 9732 2.49GB

Stanford Web
Graph

281903 2312497 215.82GB

In our experiments, we allocate pages to containers (or WARC
files) in three different ways.

- CONV: Pages are allocated to containers as they are fetched
during the crawling process. Once a container is full, we use a
new container (Figure 1).

- GP: The graph partitioning technique is applied so as to
minimize the number of edges connecting any two partitions. All
the pages belonging to a partition are allocated to a single
container (Line 3 in Figure 2 is omitted).

- ER+GP: The EdgeRank technique is used to assign weights to
edges (Line 3 in Figure 2), and the graph is partitioned using a
minimum-weight partitioning algorithm Again, containers are
constructed based on the resulting partitions. In each case, the
damping factor, d = 0.85, is used in EdgeRank.

 Input
 Seed URLs : {url1, url2, … }
 MAX_CONTAINER_SIZE

 Procedure
1: Enqueue(Q, Seed URLs)
2: i 1
3: visited[] FALSE
4: Ci new Container()
5: while (Q is non-empty)
6: u Dequeue(Q)
7: Fetch(u);
8: visited[u] TRUE
9: if (Size(Ci) + Size(u) > MAX_CONTAINER_SIZE)
10: i = i + 1
11: Ci = new Container()
12: Ci = Ci U u
13: for each v ∈ Adj[u]
14: if (visited[u] = FALSE)
15: Enqueue(Q, v)

Figure 1. Conventional Allocation of Pages to Containers

Figure 1 shows a typical BFS algorithm where a visited node is
stored in the current container as long as the size of the resulting
container does not exceed the predefined value
(MAX_CONTAINER_SIZE) (Line 9~12). A new container is
created if necessary.

In the algorithm shown in Figure 2, a web graph is first built
(Line 1) using a BFS-based crawling algorithm similar to the one
in Figure 1, followed optionally by computing EdgeRank (Line 3)
in order to obtain edge weights in the graph. This graph is then
partitioned into the pre-calculated (Line 2) number (n) of
partitions. This number depends on the total sum of vertex
weights (page sizes) in the graph, as well as the predefined
maximum container size (MAX_CONTAINER_SIZE). Once

partitioned, the URLs in each partition are re-visited and
packaged in the n containers (Line 5~9). In practice, depending
on the resource availability, the web objects downloaded from the
previous crawl (Line 1) can be stored and reused in the packaging
process.

Input
 Seed URLs : {url1, url2, … }
 MAX_CONTAINER_SIZE

 Procedure
1: G BuildWebGraph(Seed URLs) /* Using BFS */
2: n GetNumberOfContainers(G,MAX_CONTAINER_SIZE)
3: G EdgeRank(G) /* Optional */
4: {UL1,UL2,…,ULn} PartitionGraph(G, n)
5: for (1 ≤ i ≤ n)
6: Ci new Container()
7: for (v ∈ULn)
8: fetch(v)
9: Ci = Ci U v

Figure 2. Container Construction Based on Graph
Partitioning with or without EdgeRank (Line 3)

In our simulation, to be discussed in Section 4.2, the UMIACS
dataset was partitioned into 25 partitions and the Stanford dataset
was partitioned into 2200 partitions, resulting in the size of each
partition being between 100MB and 200MB.

4.1 Edge-Cut
In order to evaluate the graph partitioning performance, we
measure the edge-cut obtained from the graph partitioning
scheme, and compare it to the conventional breadth-first-search
(BFS) partitioning. We defined the cost of an edge-cut earlier as
the sum of the weights of all the external edges between
partitions. However, as we performed the experiments on the two
separate datasets with different numbers of nodes, edges and
partitions, we scaled down the cost of the edge-cut to a web graph
with the total edge weight of 100, as follows:

,100
E

ECECscaled
×

=

where E is the total edge weights in the web graph.

We begin by considering the case where the web graph has no
edge weight (or equal edge weight). We observe that the edge-
cuts generated by the conventional method were about 70~80 for
both datasets while those generated by the graph partitioning
scheme are 12 and 47 for the UMIACS and Stanford datasets
respectively. Using edge weights based on the PageRank
technique, the graph partitioning approach similarly reduces the
costs of the edge-cuts relative to the conventional approach as
illustrated in Table 2.

Table 2. Edge-Cut Results

Edge-Cut Unweighted Edges Weighted Edges
CONV GP ER+CONV ER+GP

UMIACS
Web Graph 73.87 12.38 62.36 36.03

Stanford
Web Graph 80.50 47.33 63.56 32.20

4.2 Simulation
Although the edge-cut figures show favorable results when the
partitioning technique is employed, we additionally ran
simulations to further see how much the partitioning and the
EdgeRank will in fact reduce the number of containers necessary
for a random user to browse through the archived web material. In
these simulations, we set a virtual user who randomly walks
through links, and counted the number of containers that the user
had to access.

Table 3. Simulation Parameters
Parameter Value

Number of Hops 10
Probability of Going Back 30%
Outdegree of Starting Vertex > 5
Policy At Dangling Vertex Go back

Each random walk consists of ten random hops, and at each
random hop, each outgoing link is given an equal probability of
being taken. Also, we assume that the BACK button on a browser
is pressed with 30% probability. We base this choice on a recent
browser usage research [23] which shows that hyperlinks are
taken 41.7% of time, followed by other navigation (23.6%) and
the back button (18.9%). Since, in our simulation, we only
consider hyperlinks and the back button, we assume that the back
button is pressed about 30% (≈ 18.9 / (41.7 + 18.9)) of the time.
Once the random walk reaches a vertex with no outgoing link (or
a dangling), the random walk goes back to the previous vertex, if
any, as if the user presses the BACK button. In order to avoid the
situation where there are no more vertices left to visit soon after
the start of the simulation, we insist that the randomly selected
starting vertex has an outdegree of five or larger.

In the simulations, we ran the random walk 1000 times over each
dataset, and monitored both the number of inter-container hops
and the number of distinct containers needed for each random
walk. Inter-container hops occur whenever a different container
needs to be accessed. For example, if a random walk switches
back and forth between two containers, A and B, ten times, the
number of inter-container hops will be ten, while the total number
of distinct containers is only two. In a system with no caching
policy or a limited memory, the inter-container hops will serve as
a more useful metric because, even if a user requests a previously
retrieved container, the system will always need to retrieve it
from storage. However, if a system can cache enough containers,
the total number of distinct containers will make more sense in
assessing the system’s performance. Figures 3 and 4 show the
histograms of the number of inter-container hops and distinct
containers accessed for the UMIACS web graph, respectively,
while Figures 5 and 6 show the corresponding histograms for the
Stanford web graph. In these histograms, we categorized 1000
random walks by the number of containers that each random walk
was required to access. The X-axis represents eleven categories
(0, 1, …, 10 ; Note that the total number of hops in each random
walk is ten, so there can be at most ten inter-container hops in
worst case), whereas the Y-axis represents the number of random
walks that fall into each category.

Figure 3. Histogram of Number of Inter-Container Hops for
UMIACS Web Graph

Figure 4. Histogram of Number of Distinct Containers
Accessed for UMIACS Web Graph

Figure 5. Histogram of Number of Inter-Container Hops for

Stanford Web Graph

Figure 6. Histogram of Number of Distinct Containers

Accessed for Stanford Web Graph
It can be observed that when the graph partitioning scheme is
used, many random walks only need a single container (thus, zero
inter-container hops). Figure 7 depicts the average number of
inter-container hops during the random walks over the two web
graphs. From the figure, it can be seen that the GP and ER+GP
schemes reduced the average number of inter-container hops from
five to one for the UMIACS web graph. For the Stanford web
graph, the GP scheme reduced the number from seven to five,
while ER+GP further reduced the number down to four. The
average number of containers needed is shown in Figure 8.
Although the improvements are not as dramatic as the number of
inter-container hops, compared to the CONV scheme, the GP
scheme required about 28% and 11% less number of distinct

containers for the UMIACS and Stanford web graph, respectively.
The ER+GP scheme further reduced the numbers 9% and 17%
less than those from the GP scheme.

Figure 7. Average Number of Inter-Container Hops

Figure 8. Average Number of Distinct Containers

In these experiments, based on our assumption about the access
pattern discussed in Section 3.1, we only considered the cases
where users follow hyperlinks on pages. We note that the link
analysis scheme can be tailored to capture a number of access
patterns by adjusting the weight function appropriately. The
corresponding partitioning technique will optimize the allocation
of web pages to containers so that the average number of
containers accessed is minimized.

5. CONCLUSION
In this paper, we have shown that a graph partitioning scheme for
organizing archive containers significantly reduces the number of
containers that need to be accessed when a user browses through
the archived web material. Also shown was a PageRank-derived
technique, called EdgeRank, which can improve this number even
further. The overhead required by this technique is relatively
small. For instance, on our 2 Ghz Intel Core 2 Duo processor, we
could fully partition and compute EdgeRank of a large graph (the
Stanford web graph that contains about 300,000 vertices, and 2.3
million edges) within minutes.

6. ACKNOWLEGEMENTS
We would like to thank the reviewers for their help in identifying
interesting access patterns. Thanks also go to the WebBase team
at Stanford who provided us with their massive set of archived
websites that were used in our simulation tests.

7. REFERENCES
[1] HTTrack. URL: http://www.httrack.com/. Accessed:

September 28, 2007 (Archived at:
http://www.webcitation.org/5SCSBqOXe).

[2] NutchWAX. URL: http://archive-
access.sourceforge.net/projects/nutchwax/. Accessed:

September 4, 2007 (Archived at:
http://www.webcitation.org/5SCS7U2LE).

[3] WARC, Web ARChive file format. URL:
http://www.digitalpreservation.gov/formats/fdd/fdd000236.s
html. Accessed: (Archived at.

[4] WAXToolBar. URL: http://archive-
access.sourceforge.net/projects/waxtoolbar/. Accessed:
September 28, 2007 (Archived at:
http://www.webcitation.org/5SCSFHkK3).

[5] Wayback. URL: http://archive-
access.sourceforge.net/projects/wayback/. Accessed: April
22, 2008 (Archived at:
http://www.webcitation.org/5XHOdK7vG).

[6] WERA. URL: http://archive-
access.sourceforge.net/projects/wera/. Accessed: September
4, 2007 (Archived at:
http://www.webcitation.org/5SCSHC1w7).

[7] Wikipedia Statistics. URL:
http://stats.wikimedia.org/EN/TablesWikipediaEN.htm.
Accessed: August 8, 2007 (Archived at:
http://www.webcitation.org/5QwnKX6Gp).

[8] Barnard, S.T. and Simon, H.D. A Fast Multilevel
Implementation of Recursive Spectral Bisection for
Partitioning Unstructured Problems. in Proceedings of the
Sixth SIAM Conference on Parallel Processing for Scientific
Computing. 1993. Norfolk, Virginia, USA.

[9] Brin, S. and Page, L. The anatomy of a large-scale
hypertextual Web search engine. in Proceedings of the
Seventh International Conference on World Wide Web 7.
1998. Brisbane, Australia: Elsevier Science Publishers B. V.

[10] Bui, T.N. and Jones, C. A heuristic for reducing fill in sparse
matrix factorization. in Proceedings of the Sixth SIAM
Conference on Parallel Processing for Scientific Computing.
1993. Norfolk, Virginia, USA.

[11] Cheng, C.-K. and Wei, Y.-C.A., An improved two-way
partitioning algorithm with stable performance. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 1991. 10(12): p. 1502-1511.

[12] Fiduccia, C.M. and Mattheyses, R.M. A linear-time heuristic
for improving network partitions. in Proceedings of the 19th
Conference on Design Automation. 1982: IEEE Press.

[13] George, A., Nested dissection of a regular finite element
mesh. SIAM Journal on Numerical Analysis, 1973. 10(2): p.
345-363.

[14] George, A. and Liu, J.W., Computer Solution of Large
Sparse Positive Definite. 1981: Prentice Hall Professional
Technical Reference.

[15] Golub, G.H. and Van Loan, C.F., Matrix computations.
1996, Baltimore, MD, USA: Johns Hopkins University Press.

[16] Hagen, L. and Kahng, A. Fast spectral methods for ratid cut
partitioning and clustering. in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design. 1991.
Santa Clara, CA, USA.

[17] Hagen, L. and Kahng, A.B. A new approach to effective
circuit clustering. in Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design. 1992.
Santa Clara, CA, USA.

[18] Heath, M.T. and Raghavan, P., A Cartesian parallel nested
dissection algorithm. SIAM Journal on Matrix Analysis and
Applications, 1995. 16(1): p. 235-253.

[19] Hendrickson, B. and Leland, R., An improved spectral graph
partitioning algorithm for mapping parallel computations.
SIAM Journal on Scientific Computing, 1995. 16(2): p. 452-
469.

[20] Hirai, J., et al. WebBase: A Repository of Web Pages. in The
9th International World Wide Web Conference (WWW9).
2000. Amsterdam.

[21] Karypis, G. and Kumar, V., METIS: A Software Package for
Partitioning Unstructured Graphs, Partitioning Meshes, and
Computing Fill-Reducing Orderings of Sparse Matrices.
Version 5.0pre2. 2007: Minneapolis.

[22] Karypis, G. and Kumar, V., Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and
Distributed Computing, 1998. 48(1): p. 96-129.

[23] Kellar, M., Watters, C., and Shepherd, M. The impact of task
on the usage of web browser navigation mechanisms. in GI
'06: Proceedings of Graphics Interface 2006. 2006. Quebec,
Canada: Canadian Information Processing Society.

[24] Kernighan, B.W. and Lin, S., An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical journal, 1970. 49(2): p. 291-307.

[25] Lyman, P. and Varian, H.R. How Much Information. URL:
http://www.webcitation.org/5SCSQh9n9. Accessed:
September 4, 2007 (Archived at.

[26] Masanès, J., Web Archiving: Issues and Methods, in Web
Archiving. 2006, Springer: Berlin. p. 1-53.

[27] Miller, G.L., et al., Automatic Mesh Partitioning, in IMA
Volumes in Mathematics and its Applications:. 1993,
Springer-Verlag: New York, NY, USA. p. 57-84.

[28] Miller, G.L., Teng, S.-H., and Vavasis, S.A. A unified
geometric approach to graph separators. in Proceedings of
the 32nd Annual Symposium on Foundations of Computer
Science. 1991. San Juan, Puerto Rico: IEEE Computer
Society Press.

[29] Mohr, G., et al. Introduction to Heritrix, an archival quality
web crawler. in 4th International Web Archiving Workshop.
2004. Bath, UK.

[30] Page, L., et al., The PageRank citation ranking: Bringing
order to the Web. 1998.

[31] Papoulis, A. and Pillai, S.U., Probability, Random Variables,
and Stochasitic Processes. 2002, New York: McGraw-Hill.

[32] Ponnusamy, R., et al. Graph contraction and physical
optimization methods: a quality-cost tradeoff for mapping
data on parallel computers. in International Conference of
Supercomputing. 1993. Tokyo, Japan.

[33] Pothen, A., Simon, H.D., and Liou, K.-P., Partitioning
sparse matrices with eigenvectors of graphs. SIAM Journal
on Matrix Analysis and Applications, 1990. 11(3): p. 430-
452.

