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ABSTRACT 
The web is becoming the preferred medium for communicating 
and storing information pertaining to almost any human activity. 
However it is an ephemeral medium whose contents are 
constantly changing, resulting in a permanent loss of part of our 
cultural and scientific heritage on a regular basis. Archiving 
important web contents is a very challenging technical problem 
due to its tremendous scale and complex structure, extremely 
dynamic nature, and its rich heterogeneous and deep contents. In 
this paper, we consider the problem of archiving a linked set of 
web objects into web containers in such a way as to minimize the 
number of containers accessed during a browsing session. We 
develop a method that makes use of link analysis and optimized 
graph partitioning to enable faster browsing of archived web 
contents. Our overall methodology is very general and can be 
used to optimize different browsing patterns. We include 
simulation results that illustrate the performance of our scheme 
and compare it to the common scheme currently used to organize 
web objects into web containers.   

Categories and Subject Descriptors 
H.3.2 [Information Storage and Retrieval]: Information Storage 
– file organization; H.3.7 [Information Storage and Retrieval]: 
Digital Libraries; H.3.4 [Information Storage and Retrieval]: 
Systems and Software 

General Terms 
Algorithms, Design, Performance, Experimentation 

Keywords 
Digital archives, web archiving, link analysis, graph partitioning 

1. INTRODUCTION 
An unprecedented amount of information encompassing almost 
every facet of human activity across the world is currently 
available on the web and is growing at an extremely fast pace. In 
many cases, the web is the only medium where such information 
is recorded. However, the web is an ephemeral medium whose 
contents are constantly changing and new information is rapidly 
replacing old information, resulting in the disappearance of a 
large number of web pages every day and in a permanent loss of 
part of our cultural and scientific heritage on a regular basis. A 

number of efforts, currently underway, are trying to develop 
methodologies and tools for capturing and archiving some of the 
web’s contents that are deemed critical. However there are major 
technical, social, and political challenges that are confronting 
these efforts. Major technical challenges include automatic tools 
to identify, find, and collect web contents to be archived, 
automatic extraction of metadata and context for such contents 
including linking structures that are inherent to the web, the 
organization and indexing of the data and the metadata, and the 
development of preservation and access mechanisms for current 
and future users, all at unprecedented scale and complexity. 

Leaving aside dynamic and deep contents, web contents involve a 
wide variety of objects such as html pages, documents, 
multimedia files, scripts, etc., as well as, linking structures 
involving these objects. While the size of most web pages is 
small, the total number of web pages on a single web site can 
range from one to several millions. For example, as of Oct 30, 
2006, Wikipedia.org alone claims to have about 1.4 million 
articles [7], each making up a distinct web page. A critical piece 
of web archiving is to capture the linking structures and organize 
the archived pages in such a way that future generations of users 
will be able to access and navigate through the archived web 
information in the same way as in the original linked structure. 
Note that by that time, the archived web contents may have 
migrated through several generations of hardware and software 
upgrades, including migration through different types of media, 
different file systems, and different formats. 

In this paper, we address the problem of how to organize the web 
objects so that we will be able to navigate through the linking 
structure of the web objects as effectively as possible.  Since the 
majority of web pages tend to be small, they are typically 
aggregated into relatively large containers as the objects are 
accessed during the crawling process. An emerging standard for 
such containers is the WARC format [3], which evolved from the 
ARC container format developed by the Internet Archive, 
currently the world’s largest internet archive. Moreover, many 
web crawlers and access tools, Heritrix [29], NutchWAX [2], 
Wayback [5], WAXToolbar [4] and Wera[6], assume this format.  

Given a set of WARC containers that hold an archived linked set 
of web objects, a future browsing process of the archived objects 
starts with a web object defined by a seed link, followed by 
navigation through the linked structure until the desired web 
object is found. Our goal is to organize the web objects into 
containers so as to minimize the number of containers needed to 
complete a typical browsing process. We develop an algorithm 
that assigns web objects to containers by performing an initial 
link analysis on the given linked structure, followed by a 
partitioning process that leads to an efficient solution to this 
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problem. We show that our method enables effective navigation 
through the archived linked structure and compare its 
performance to the dominant scheme in use today. 

We start in Section 2 by describing the previous work related to 
our problem, followed by developing and justifying our method in 
Section 3.  We apply our method to two web site examples and 
examine the performance gains achieved by our method in 
Section 4.  We conclude in Section 5. 

2. RELATED WORK 
We review in this section the possible storage formats for 
archiving web contents and a couple of techniques in link analysis 
and graph partitioning which will form the core of our method. 

2.1 Archival Storage 
In order to organize and store web objects in an archive, several 
methods have been proposed and are currently in use. A 
straightforward method (such as the one implemented in [1]) is 
based on using the local file system where the target web material 
is copied object by object to the local file system, maintaining the 
relative structure among the objects. For future access, the html 
tag ‘file’ can replace the ‘http’ tag in the original object.  We can 
then use the local file system for navigation through the archived 
web material. For example, ‘http://www.example.org/index.html’ 
can be rewritten as ‘file:///archive/2007.08.01/www.example.org/ 
index.html’. It is relatively easy to set up and run this type of web 
archiving and the retrieval process is carried out using local file 
access mechanisms. However, there are several problems in using 
this method for web archiving including its limited scalability to 
what the local file system can handle, and the difficulty to 
preserve the contents over time as they are tightly coupled to the 
specific file system. Moreover, this strategy requires 
modifications to the original contents, and thus the strict 
faithfulness to the original contents cannot be maintained in most 
cases [26].  
The second approach extracts documents from the hypertext 
context and reorganizes them in a different format while setting 
up different access mechanisms. For example, a small set of web 
pages can be converted into a single PDF document.  However, 
this strategy makes sense mainly for specific objects that were 
originally created independently of the web. Although it is 
possible to maintain the hypertext structure within the converted 
documents, for the broader range archiving, this approach loses 
the hypertext structure between multiple such documents. 
The most popular method currently in use by most web archives, 
including the Internet Archive, stores web objects in WARC [3] 
container files. A WARC file holds a set of harvested web files, 
each with its own auxiliary metadata. The size of a WARC file 
can vary up to hundreds of megabytes (usually 100~500MB). 
Typically, an external indexing server is maintained to provide 
the mapping between hyperlinks inside a WARC file and the 
location of the archived object that the hyperlinks point to. For 
example, if, inside a WARC file, there is a web page archived on 
September 24, 2007 which has an outgoing hyper link with a tag 
<a href=”http://www.example.org/images/welcome.jpg>, the 
indexing server could return in response to the tag and date 
something like ‘20070924082031-00007.warc’ and ‘1463539’ 
which are the WARC file name and the offset in the WARC file, 
respectively. In this paper, we will also assume that web files are 

placed in such containers such that a certain upper bound on the 
size of the container is assumed. 

2.2 Graph Partitioning Techniques 
Web material can be considered as a graph (web graph) where 
each constituent web page is represented by a vertex, and each 
incoming/outgoing link corresponds to a directed edge. Once 
represented as a graph, the web graph can be partitioned into 
multiple subgraphs using one of existing graph partitioning 
techniques. The basic goal of a minimum edge-cut partitioning is 
to minimize some defined cost on the edges connecting the 
partitions. There are many ways to define the external cost of 
graph partitioning but the two notions most widely used are the 
maximum weight of the edges between vertices which lie on 
different partitions, and the total weight of all the edges 
connecting distinct partitions. Although the graph partitioning 
problem is known to be NP-complete, many heuristic algorithms 
have been developed which find very good partitions in practice 
[10, 11, 16-19, 22, 24, 27, 28, 32]. However, for our application, 
we will require additional constraints, which cannot necessarily 
be handled by many of the well-known graph partitioning 
algorithms. We review here some of the algorithms that can be 
used to solve our graph partitioning problem that will be defined 
formally in Section 3. 
Perhaps the best known graph partitioning algorithm is the 
Kerninghan-Lin algorithm [24], where the partitioning process 
starts with an arbitrary partition, and then proceeds to decrease 
the external cost by a series of interchanges of subsets of the 
partitions repeatedly until no further improvement is possible. To 
avoid local optimality, the algorithm is applied repeatedly to 
obtain a number of locally optimum partitions among which the 
best partition is chosen. Although Fiduccia and Mattheyses [12] 
later improved the performance of the Kerninghan-Lin algorithm, 
their algorithm is considered computationally expensive 
especially if the graph is large, which is clearly the case for our 
application.  
In order to cope with large graphs, researchers devised multilevel 
graph partitioning schemes [10, 11, 17, 22, 32] where the 
algorithms reduce the size of the graph (or “coarsen” the graph) 
by collapsing vertices and edges, partition the resulting smaller 
graph, and then “uncoarsen” it to construct a partition for the 
original graph. While the multilevel scheme was mainly 
developed and used to improve the partitioning performance of a 
large graph at the expense of worse partition quality [32], more 
recent multilevel algorithms, such as in [10, 11, 17, 22], further 
refine the partition during the uncoarsening phase, thus obtaining 
a partition quality that is comparable or even better than other 
existing techniques [19]. The Kerninghan-Lin algorithm is often 
used as the refinement algorithm. 

2.3 Link Analysis Technique - PageRank 
PageRank [30] is a link analysis algorithm that assigns a 
numerical weight to each element of a hyperlinked set of 
documents, such as web material. Intuitively, a web page with a 
higher PageRank should have a higher probability of being 
visited. The intuition behind PageRank is that if page u has a link 
to page v, then page u is implicitly conferring some importance to 
page v. In other words, page u can be thought as voting for page v. 
The more votes a page receives, the more important it is 
considered. However, not every vote counts equally: votes cast by 



pages that are themselves “important” weigh more heavily and 
help other pages become more “important”. 
In the ideal model, the PageRank value for page u, PR(u), can be 
expressed as: 

,)()( ∑
∈
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where Iu is the set of pages with links to page u, and Pvu is the 
probability that a random surfer visiting page v jumps to page u. 
Since it is not possible to know the exact value of Pvu, Pvu 

is 
usually set to 1/out_degree(v), that is, all outgoing links from v 
are assumed to be equally likely. 
However, the ideal model has two problems. The first problem is 
the presence of dangling pages that shut the surfer when visited. 
A solution to the problem is to patch dangling pages by 
artificially placing outgoing links from each dangling page to all 
the other pages. Each artificial link can be given either equal 
probability of  1/N (N: total number of pages), or personalized 
probability which records a generic surfer’s preference for each 
page. The second problem with the ideal model is that the surfer 
can get trapped by a cyclic path in the web graph. Brin and Page 
[9] suggest enforcing irreducibility by adding a new set of 
artificial transitions that, with low probability, jump to all nodes. 
Mathematically, this corresponds to the following equation: 

,)(1)( ∑
∈

+
−

=
uIv

vu vPRpd
N

duPR  

where N is the total number of pages, and d is the probability the 
random surfer jumps to a random page without a link. 
We note that this equation is slightly different from the original 
PageRank equation as proposed by Brin and Page [9]. The 
original equation, ∑

∈

+−=
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vu vPRpdduPR )(1)( , has 

brought up some confusion since, unlike the inventors’ claim, the 
sum of all PageRanks is not one, but N. The above scaled version, 
however, leads to ∑ =1)(vPR , and each PageRank can be 

thought as a probability. In the above equation, the parameter d is 
called the damping factor which can be set somewhere between 0 
and 1. As suggested in [30] and [9], we use d = 0.85 in our work 
which will be further described in the next section. 
If we let G = (V, E) be a web graph, and A the modified 
adjacency matrix of G defined by: 
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where is the number of out-links from page j. 

If we also let P be an N-dimensional column vector of PageRank 
values, then P can be expressed by the following matrix equation: 
P = AP  

This is the characteristic equation of the eigensystem whose 
solution is the eigenvector corresponding to the eigenvalue of 
one. Furthermore, A can be considered as a stochastic matrix that 

is also irreducible and aperiodic, due to the modifications we 
performed earlier to avoid dangling nodes and cyclic paths. 
Therefore, by the Ergodic theorem of Markov chains [31], a finite 
Markov chain defined by the stochastic transition matrix A has a 
unique stationary probability distribution. This implies that, 
starting with any initial value of P, we can iterate the application 
of the matrix A to P, and P will converge to a steady-state 
probability vector, which in turn is the eigenvector of A 
corresponding to the eigenvalue of one. In practice, a well known 
mathematical technique called power iteration [15] can be used to 
efficiently determine P. 
As will be discussed further in the next section, our link analysis 
technique is based on the PageRank algorithm. However, unlike 
the PageRank algorithm that assigns a weight to each page, we 
assign a weight to each link, which will then be used to partition 
the graph. 

3. OUR METHOD 
As discussed earlier, the most popular storage method for web 
archiving is to use containers where each container holds a 
number of web pages. Typically, web material is archived using 
many containers. The primary goal of our work is to develop 
techniques to allocate web pages to containers such that each 
container has as closely related web pages as possible, thereby 
minimizing the chances of accessing many different containers 
when a user browses through the archived web material. When 
web contents are archived in the form of multiple containers, we 
can view these containers as a coarsened web graph (or container 
graph) where the original nodes within the same container are 
collapsed together to form a super node, and only edges between 
different containers survive with assigned weights as will be 
explained next. 
In the container graph, Gc=(Vc, Ec), we define the cost of the 
edge-cut, EC, as follows: 

,∑
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where we is the weight of edge e. 
In order to accomplish our goal, we analyze the link structure 
within the web material to be archived to find, for each edge, a 
good estimate of the probability that the edge will be taken. Using 
this estimate as the edge weight, we partition the web graph in 
such a way as to minimize EC. The following two subsections 
discuss our link analysis and the partitioning technique used to 
minimize EC. 

3.1 Edge Weight 
Edge weights should represent the relative likelihood of an edge 
being taken during a browsing session. In the live web, edges are 
hyperlinks embedded in web pages, but in an archive, edges in the 
web graph can also exist between two consecutive versions of a 
web page. In order to assign edge weights, a link analysis is 
performed. Before proceeding we note that our scheme will be 
based on a browsing pattern similar to what is expected in today’s 
live web. However it is easy to accommodate other access 
patterns within our methodology using a different weight function 
on the edges.  For example, should browsing of successive 
versions of a web page dominate, we will assign heavy weights to 
the corresponding edges relative to the remaining edges.  



Similarly, should the access pattern to subdomains of sites 
dominate, the corresponding edge weights will be assigned high 
values. For the rest of this paper, we are assuming an access 
pattern similar to the one currently encountered on the live web. 

We start with some simple observations. If a vertex has only one 
outgoing edge, this edge will be more likely taken than an edge 
from another vertex with many out-links, and thus should be 
weighed more heavily. A possible simple solution is to assign 
edge weights depending on the number of out-links of the source 
vertex. For instance, if the source vertex of edge e has k outgoing 
edges, the weight of 1/k  is given to edge e.  

When a personalized vector is not in use, the PageRank algorithm 
also uses the same method in assigning edge weights. In this case, 
the only deciding factor to the edge weight is the number of the 
outgoing edges from the source vertex, and thus the edge weight 
only represents the local probability of the edge being taken, once 
the source vertex is visited. In other words, the edge weight is 
only locally meaningful, and thus it is not possible to say that an 
edge is more likely to be taken than the other if they belong to 
different vertices. 

For our method, the probability of each vertex being visited is 
computed first using the PageRank algorithm. The PageRank 
value (or steady-state probability) of each vertex is then divided 
by the number of outgoing edges from the vertex. We call this 
quotient EdgeRank (ER) and assign the same EdgeRank value as 
the weight to every edge coming out from the same vertex. 

,
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where vertex v is the source vertex of edge e. 

Note that, since  ∑ =1)(vPR , ∑ =1)(eER   too. 

Now that we have an edge-weighted graph representing our web 
contents, the allocation of web pages to containers is performed 
using a graph partitioning algorithm. 

3.2 Graph Partitioning 
As discussed in Section 2, there are a number of existing min-cut 
graph partitioning heuristics that seem to work well in practice. 
Although their primary partitioning criterion is to minimize the 
cost of the edge-cut, they differ from one another in input, output, 
and partitioning parameters. For example, some algorithms 
support size-constrained partitioning while others do not. Also, 
not all algorithms support weighted vertices and edges. Before 
proceeding let’s define our graph partitioning problem more 
formally.  

Web Graph Partitioning Problem: Given a directed web graph 
G:(V, E)  with weighted nodes (weight of a node is the size of the 
corresponding page) and weighted edges, determine a partition   V 
= P1 U P2 U P3 U … U Pn such that, 

1. The sum of the weights of the edges that connect any two 
different partitions is minimized. 

2. For all i’s, |Pi| ≤ K  for some fixed K, where |Pi| is the sum of 
the weights of the vertices in the partition and K is an upper 
bound on the size of a container. 

The first condition is shared by almost all partitioning algorithms 
(some require non-weighted edges), while the second condition, 
which is the size constraint imposed to every partition, is 
supported only by a few partitioning algorithms (such as [19, 21, 
22]), sometimes with a slight modification. 

In this work, we adopt the multilevel graph partitioning algorithm 
to solve our problem. The primary reason is that it supports the 
constraints on the partition size; moreover, the method is fast, 
which is important in our case considering the typically large 
sizes of web graphs. In particular, we adapt a partitioning 
technique suggested by Karypis and Kumar [22] as follows.  

Their scheme first computes a maximal matching using a 
randomized algorithm, and coarsens the graph by collapsing the 
matched vertices together. This coarsening step is repeated until a 
desired size of the coarsened graph is achieved. Once the graph is 
coarsened, the minimum edge-cut bisection is computed using 
some of existing algorithms such as spectral bisection [8, 33], 
geometric bisection [28] or combinatorial methods [13, 14, 24]. 
The partitioned graph is then refined and uncoarsened. The 
improved Kerninghan-Lin algorithm that was developed by 
Karypis and Kumar is applied to this uncoarsening-with-
refinement phase.  

In particular, we use Metis [21], a partitioning tool that 
implements the Karypis-Kumar scheme. Although Metis does not 
explicitly support the partition size constraints – our second 
condition, it does support vertex-weight-based size balancing 
among partitions, making the size of all partitions similar. 
Therefore, based on the sum of all the vertex weights of the web 
graph, we pre-compute the necessary number of partitions before 
running the partitioning tool, so that the resulting partitions will 
meet the second condition. 

4. EXPERIMENTAL EVALUATION OF 
OUR SCHEME 
In order to examine the performance of our algorithm in terms of 
the number of containers accessed during a typical browsing 
session, we consider two datasets. The first is the web graph of 
the University of Maryland Institute for Advanced Computer 
Studies (UMIACS) web site, located at http://umiacs.umd.edu 
domain, which we call the UMIACS web graph. We crawled 
every web page within five-hop distance (or depth) under this 
domain, and constructed the web graph corresponding to this 
crawling. The second dataset is the Stanford web graph which 
was generated from a crawl of the stanford.edu domain created in 
September 2002 by the Stanford WebBase project [20], and is 
widely used by the web graph analysis community. Unlike the 
first dataset, the Stanford web graph has neither the size 
information of vertices, nor the actual URLs with which we might 
have been able to obtain estimates of the web pages (which 
undoubtedly have changed since then). Consequently, we 
randomly assign vertex sizes using two Gaussian distributions – 
one for html files, the other for non-html files. Their parameters 
are based on the findings from a web statistics study [25]. In 
particular, we assumed there are about 18% html objects by total 
file size, and the average html file size is 605 KB. This size 
modeling is not intended to mimic the actual web object sizes in 
the Stanford web page. Rather, we intend to assign some 
reasonable sizes to run our experiments. Note that the quality of 



our method does not depend on the accuracy of the vertex sizes. 
Table 1 describes these two datasets. 

Table 1. The Two Datasets Used for Evaluating Our Method 

Datasets # Vertices # Edges Total Vertex 
W i htUMIACS Web 

Graph 
4579 9732 2.49GB 

Stanford Web 
Graph 

281903 2312497 215.82GB 

In our experiments, we allocate pages to containers (or WARC 
files) in three different ways. 

- CONV: Pages are allocated to containers as they are fetched 
during the crawling process. Once a container is full, we use a 
new container (Figure 1). 

- GP: The graph partitioning technique is applied so as to 
minimize the number of edges connecting any two partitions. All 
the pages belonging to a partition are allocated to a single 
container (Line 3 in Figure 2 is omitted). 

- ER+GP: The EdgeRank technique is used to assign weights to 
edges (Line 3 in Figure 2), and the graph is partitioned using a 
minimum-weight partitioning algorithm Again, containers are 
constructed based on the resulting partitions. In each case, the 
damping factor, d = 0.85, is used in EdgeRank. 

 Input 
 Seed URLs : {url1, url2, … } 
 MAX_CONTAINER_SIZE 
  
 Procedure 
1: Enqueue(Q, Seed URLs) 
2: i 1 
3: visited[]  FALSE 
4: Ci  new Container() 
5: while (Q is non-empty) 
6:      u  Dequeue(Q) 
7:      Fetch(u); 
8:      visited[u] TRUE 
9:      if (Size(Ci) + Size(u) > MAX_CONTAINER_SIZE) 
10:           i = i + 1 
11:           Ci = new Container() 
12:      Ci = Ci  U u 
13:      for each v ∈ Adj[u] 
14:           if (visited[u] = FALSE) 
15:                   Enqueue(Q, v) 

Figure 1. Conventional Allocation of Pages to Containers 

Figure 1 shows a typical BFS algorithm where a visited node is 
stored in the current container as long as the size of the resulting 
container does not exceed the predefined value 
(MAX_CONTAINER_SIZE) (Line 9~12). A new container is 
created if necessary. 

In the algorithm shown in Figure 2, a web graph is first built 
(Line 1) using a BFS-based crawling algorithm similar to the one 
in Figure 1, followed optionally by computing EdgeRank (Line 3) 
in order to obtain edge weights in the graph. This graph is then 
partitioned into the pre-calculated (Line 2) number (n) of 
partitions. This number depends on the total sum of vertex 
weights (page sizes) in the graph, as well as the predefined 
maximum container size (MAX_CONTAINER_SIZE). Once 

partitioned, the URLs in each partition are re-visited and 
packaged in the n containers (Line 5~9). In practice, depending 
on the resource availability, the web objects downloaded from the 
previous crawl (Line 1) can be stored and reused in the packaging 
process. 

Input
 Seed URLs : {url1, url2, … } 
 MAX_CONTAINER_SIZE 
  
 Procedure 
1: G  BuildWebGraph(Seed URLs)  /* Using BFS */ 
2: n GetNumberOfContainers(G,MAX_CONTAINER_SIZE) 
3: G  EdgeRank(G) /* Optional */ 
4: {UL1,UL2,…,ULn}  PartitionGraph(G, n) 
5: for ( 1 ≤ i ≤ n) 
6:      Ci  new Container() 
7:    for (v ∈ULn)
8:           fetch(v) 
9:           Ci = Ci U v 

Figure 2. Container Construction Based on Graph 
Partitioning with or without EdgeRank (Line 3) 

In our simulation, to be discussed in Section 4.2, the UMIACS 
dataset was partitioned into 25 partitions and the Stanford dataset 
was partitioned into 2200 partitions, resulting in the size of each 
partition being between 100MB and 200MB. 

4.1 Edge-Cut 
In order to evaluate the graph partitioning performance, we 
measure the edge-cut obtained from the graph partitioning 
scheme, and compare it to the conventional breadth-first-search 
(BFS) partitioning. We defined the cost of an edge-cut earlier as 
the sum of the weights of all the external edges between 
partitions. However, as we performed the experiments on the two 
separate datasets with different numbers of nodes, edges and 
partitions, we scaled down the cost of the edge-cut to a web graph 
with the total edge weight of 100, as follows: 

,100
E

ECECscaled
×

=  

where E is the total edge weights in the web graph. 

We begin by considering the case where the web graph has no 
edge weight (or equal edge weight). We observe that the edge-
cuts generated by the conventional method were about 70~80 for 
both datasets while those generated by the graph partitioning 
scheme are 12 and 47 for the UMIACS and Stanford datasets 
respectively. Using edge weights based on the PageRank 
technique, the graph partitioning approach similarly reduces the 
costs of the edge-cuts relative to the conventional approach as 
illustrated in Table 2. 

 
Table 2. Edge-Cut Results 

Edge-Cut Unweighted Edges Weighted Edges 
CONV GP ER+CONV ER+GP

UMIACS 
Web Graph 73.87 12.38 62.36 36.03 

Stanford 
Web Graph 80.50 47.33 63.56 32.20 



4.2 Simulation 
Although the edge-cut figures show favorable results when the 
partitioning technique is employed, we additionally ran 
simulations to further see how much the partitioning and the 
EdgeRank will in fact reduce the number of containers necessary 
for a random user to browse through the archived web material. In 
these simulations, we set a virtual user who randomly walks 
through links, and counted the number of containers that the user 
had to access. 

Table 3. Simulation Parameters 
Parameter Value 

Number of Hops 10 
Probability of Going Back 30% 
Outdegree of Starting Vertex > 5 
Policy At Dangling Vertex Go back 

 
Each random walk consists of ten random hops, and at each 
random hop, each outgoing link is given an equal probability of 
being taken. Also, we assume that the BACK button on a browser 
is pressed with 30% probability. We base this choice on a recent 
browser usage research [23] which shows that hyperlinks are 
taken 41.7% of time, followed by other navigation (23.6%) and 
the back button (18.9%). Since, in our simulation, we only 
consider hyperlinks and the back button, we assume that the back 
button is pressed about 30% (≈ 18.9 / (41.7 + 18.9)) of the time. 
Once the random walk reaches a vertex with no outgoing link (or 
a dangling), the random walk goes back to the previous vertex, if 
any, as if the user presses the BACK button. In order to avoid the 
situation where there are no more vertices left to visit soon after 
the start of the simulation, we insist that the randomly selected 
starting vertex has an outdegree of five or larger. 

In the simulations, we ran the random walk 1000 times over each 
dataset, and monitored both the number of inter-container hops 
and the number of distinct containers needed for each random 
walk. Inter-container hops occur whenever a different container 
needs to be accessed. For example, if a random walk switches 
back and forth between two containers, A and B, ten times, the 
number of inter-container hops will be ten, while the total number 
of distinct containers is only two. In a system with no caching 
policy or a limited memory, the inter-container hops will serve as 
a more useful metric because, even if a user requests a previously 
retrieved container, the system will always need to retrieve it 
from storage. However, if a system can cache enough containers, 
the total number of distinct containers will make more sense in 
assessing the system’s performance. Figures 3 and 4 show the 
histograms of the number of inter-container hops and distinct 
containers accessed for the UMIACS web graph, respectively, 
while Figures 5 and 6 show the corresponding histograms for the 
Stanford web graph. In these histograms, we categorized 1000 
random walks by the number of containers that each random walk 
was required to access. The X-axis represents eleven categories 
(0, 1, …, 10 ; Note that the total number of hops in each random 
walk is ten, so there can be at most ten inter-container hops in 
worst case), whereas the Y-axis represents the number of random 
walks that fall into each category.  

Figure 3. Histogram of Number of Inter-Container Hops for 
UMIACS Web Graph 

Figure 4. Histogram of Number of Distinct Containers 
Accessed for UMIACS Web Graph 

 
Figure 5. Histogram of Number of Inter-Container Hops for 

Stanford Web Graph 

 
Figure 6. Histogram of Number of Distinct Containers 

Accessed for Stanford Web Graph 
It can be observed that when the graph partitioning scheme is 
used, many random walks only need a single container (thus, zero 
inter-container hops). Figure 7 depicts the average number of 
inter-container hops during the random walks over the two web 
graphs. From the figure, it can be seen that the GP and ER+GP 
schemes reduced the average number of inter-container hops from 
five to one for the UMIACS web graph. For the Stanford web 
graph, the GP scheme reduced the number from seven to five, 
while ER+GP further reduced the number down to four. The 
average number of containers needed is shown in Figure 8. 
Although the improvements are not as dramatic as the number of 
inter-container hops, compared to the CONV scheme, the GP 
scheme required about 28% and 11% less number of distinct 



containers for the UMIACS and Stanford web graph, respectively. 
The ER+GP scheme further reduced the numbers 9% and 17% 
less than those from the GP scheme. 

 
Figure 7. Average Number of Inter-Container Hops 

 
Figure 8. Average Number of Distinct Containers 

In these experiments, based on our assumption about the access 
pattern discussed in Section 3.1, we only considered the cases 
where users follow hyperlinks on pages. We note that the link 
analysis scheme can be tailored to capture a number of access 
patterns by adjusting the weight function appropriately. The 
corresponding partitioning technique will optimize the allocation 
of web pages to containers so that the average number of 
containers accessed is minimized. 

5. CONCLUSION 
In this paper, we have shown that a graph partitioning scheme for 
organizing archive containers significantly reduces the number of 
containers that need to be accessed when a user browses through 
the archived web material. Also shown was a PageRank-derived 
technique, called EdgeRank, which can improve this number even 
further. The overhead required by this technique is relatively 
small. For instance, on our 2 Ghz Intel Core 2 Duo processor, we 
could fully partition and compute EdgeRank of a large graph (the 
Stanford web graph that contains about 300,000 vertices, and 2.3 
million edges) within minutes. 
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