

ACE: a Novel Software Platform to Ensure the Long Term Integrity of Digital

Archives
Sangchul Song, Joseph JaJa; Institute for Advanced Computer Studies, Department of Electrical and Computer Engineering,
University of Maryland, College Park, Maryland, USA

Abstract
We develop a new methodology to address the integrity of

long term archives using rigorous cryptographic techniques. A
prototype system called ACE (Auditing Control Environment) was
designed and developed based on this methodology. ACE creates a
small-size integrity token for each digital object and some
cryptographic summary information based on all the objects
handled within a dynamic time period. ACE continuously audits
the contents of the various objects according to the policy set by
the archive, and provides mechanisms for an independent third-
party auditor to certify the integrity of any object. In fact, our
approach will allow an independent auditor to verify the integrity
of every version of an archived digital object as well as link the
current version to the original form of the object when it was
ingested into the archive. We show that ACE is very cost effective
and scalable while making no assumptions about the archive
architecture. We include in this paper some preliminary results on
the validation and performance of ACE on a large image
collection.

Introduction
One of the most challenging problems facing digital archives

is how to ensure the authenticity of their holdings over the long
term (tens or hundreds of years). Unless the authenticity of an
archive can be assured, it may not be possible to use the archive’s
holdings to support any significant endeavor. Digital information
is in general quite fragile, especially over time. Errors can be
introduced because of hardware and media degradation, hardware
and software malfunction, operational errors, security breaches,
and malicious alterations, to name a few of the obvious ones.
Other potential sources of errors, which are particularly relevant
for long term archives, include major hardware and software
systems changes due to technology evolution, and the possibility
of major natural hazards and disasters such as fires, floods, and
hurricanes. Two additional factors complicate this problem further.
First, an object may be subjected to a number of transformations
during its lifetime, including those migrative transformations due
to format obsolescence. These transformations may alter the object
in unintended ways. Second, most current integrity checking
mechanisms are based on some type of cryptographic techniques,
most of which are likely to become less immune to potential
attacks over time and hence they will need to be replaced by
stronger techniques. Therefore any approach to ensure the
authenticity of a long term archive has to also be able to address
these two problems as well.

Several technical approaches have been proposed to address
the long term integrity of digital archives, including those that
appeared in [1], [3], [4], [6], [7], [8], and [9], but none seems to

offer a solid approach that is applicable to the different emerging
architectures for digital archives (including centralized and
distributed archives) and that is capable to continually monitor and
verify the integrity of the data in a cost effective way.

In this paper, we introduce a general software environment
called ACE (Auditing Control Environment), which is based on a
rigorous cryptographic approach and yet quite efficient and can
interoperate with any archiving architecture. Using the new
framework, we introduce procedures to continually verify the
integrity of the archive. Our approach will allow an independent
auditor to verify the integrity of every version of an archived
digital object as well as link the current version to the original
form of the object when it was ingested into the archive.

Specifically, ACE is based on creating a small-size integrity
token for each digital object upon its deposit into the archive (or
upon registration of the object of an existing archive), to be stored
either with the object itself or in a registry at the archive as
authenticity metadata. Cryptographic summary information that
depends on all the objects registered during a dynamic time period
is stored and managed separately. The summary information is
very compact and is of size independent of the number or sizes of
the objects ingested. Regular audits will be continuously
conducted, which will make use of the integrity tokens and the
summary integrity information to ensure the integrity of both the
objects and the integrity information. In our prototype, audits can
also be triggered by an archive manager or by a user upon data
access. However we are assuming that the auditing services are not
allowed to change the content of the archive even if errors are
detected. The responsibility for correcting errors is left to the
archive administrator after being alerted by the auditing service.

Overview of the ACE Approach
ACE adopts a two-tier approach. The first tier deals with

creating a small size Integrity Token (IT) (Figure 1) for each
digital object upon its deposit into the archive (or upon registration
of the object of an existing archive), to be stored either with the
object itself or in a registry at the archive as authenticity metadata.
Cryptographic Summary Information (CSI) depending on all the
objects registered during a dynamically adjustable time interval is
stored and managed independently of and separately of the
archive. The ITs and CSIs are used to continually verify the
authenticity of the corresponding digital object. The second tier
involves the generation of very compact witness values that
cryptographically depend on all the objects ingested during a
relatively long time period (such as a week).

Figure 1. Integrity Token

ACE: First Tier
The first tier integrity information types (IT and CSI) are

generated in two steps; aggregative registration and hash-linking.
The aggregative registration of the objects is typically invoked
during ingestion, and composed of aggregation rounds. The
interval of each round is determined dynamically based on the
number of registration requests and time passed. This dynamic
aggregation period allows us to control both the maximum size of
ITs and maximum wait-time for registration. During an
aggregation round, the hashes of all the objects submitted for
registration as well as random hashes as necessary are aggregated
using an authentication tree such as the Merkle’s tree [10]. Note
that, in practice, the hash of the object is submitted as a part of the
registration request (IT Req in Figure 1). The internal node in the
authentication tree has the hash value of the concatenated hashes at
the children. We insert random hash values into each round to
ensure that the tree will always have a certain minimal number of
leaves. Figure 2 shows an authentication tree for a round involving
eight objects with hash values 7210 ,...,,, hhhh .

Figure 2. Authentication Tree (IT Reqi contains hi)

Note that the value at the root is a hash value that depends in

a cryptographic sense on all the objects processed during a round.
For each object, we assemble a short list of hashes from the tree,
called an aggregation proof, to enable the derivation of the root
value from the hash of the object. We time stamp all the objects
participating in each round with the same time stamp.

The second step consists of linking the hash value generated
at each round with the hash values generated at the previous
rounds using a structure that depends on the linking scheme used.
In our prototype, we use a simple binary linking scheme that
computes the hash value of the previous Cryptographic Summary
Information (CSI) concatenated with the hash value of the current
round as illustrated in Figure 3. This is the same scheme as
suggested in [5] and [24]. In this binary linking scheme, the only
two data necessary to construct CSI is the previous CSI and the
root value of the authentication tree. The former is included in IT
(LSI in Figure 1), whereas the latter can be re-computed using the
aggregation proof. In the other words, IT has all the information to
re-compute the corresponding CSI at any time.

Figure 3. CSI Chain

ACE: Second Tier
As mentioned before, the second tier deals with generating

witness values that will ensure the integrity of CSIs which are
generated from the first tier operations. A witness value is
constructed by aggregating the CSIs that have been created over
each week, using an authentication tree whose root value becomes
the witness value of the week. These witness values are published
over the Internet at well-known public sites offering storage,
library, or publication services. Since these witness values are
small in size (1KB~2KB a year), we also store them on a CD
ROM (in fact, on multiple CD-ROMs that are refreshed on a
regular basis). ACE currently uses the Internet newsgroups at
Google, Yahoo, and MSN as publication services.

ACE Procedures

Registration
Objects are typically registered with ACE during the

ingestion process. A registration request involves creating a
registration token (IT Req in Figure 1), and submitting the token to
the ACE server. The ACE server generates the IT and the CSI, and
returns IT to the requester. The returned IT is locally stored with
proximity to the object itself, whereas CSI is managed internally
within the ACE server.

Verification and Auditing
ACE provides two types of integrity auditing, the first

involves a process running on a moderately secure server external
to the archive, which verifies the integrity of the archive’s content
in a periodic, regular fashion; the second involves an auditing
process triggered by an archivist or by a user upon data access. A
simple way to verify the integrity of an object involves the
following steps

Step 1. Compute the hash of the given object and compare it to
the hash stored in the object’s token. Proceed to the next
step if there is an agreement; otherwise, either the object
or its token has been modified. In the latter case, we can
distinguish between the two possibilities by proceeding to
the next step as well

Step 2. Use the computed hash value in combination with the
proof in the token to determine the CSI of the round
during which the object was injected into the system. An
agreement indicates that the object is intact (correct the
hash value stored in the token if necessary).

The decision on the integrity of the given object is made only
if there is an agreement in Step 2. In case of a disagreement, we
report that the object may be corrupt, and leave it up to the archive
manager to decide whether or not to verify the integrity of the
corresponding CSI value or compare the corresponding object with
another copy in the archive.

Considering that it is more likely to have a corrupted object
than a corrupted integrity token (integrity tokens do not have to be
made publicly available), in a practical implementation, one can
choose to have two separate processes – one that performs only
Step 1, and the other performs Step 2. That is, the object integrity
and the token integrity are verified separately and independently
according to the policies set by the archive and the integrity
management system. The two can be linked together whenever
necessary using the above procedure.

Witness Publication
The ACE server constantly runs a process that constructs and

publishes witnesses on a weekly basis. The fact that these
witnesses are cryptographically dependent on CSIs maintained
within the server, along with the assumption that the published
witnesses are almost impossible to tamper with, allows us to
ensure the integrity of CSIs through the witness validation
procedure discussed below.

Witness Validation
In this internal procedure, the integrity of each CSI is checked

using witnesses previously published. In particular, for each
witness value W and for each CSI value computed within that
week, we check to see if the proof attached to the CSI value yields
W. In the affirmative, the CSI value is correct. Otherwise, it is not.

In the case when the object or the CSI is determined to be
incorrect, our verification service notifies the archive manager
about the faulty object, and it is left up to the archive to take the
appropriate action. We believe that an integrity verification service
should not be allowed to modify anything in the archive. Its main
function is to continually monitor and verify the authenticity of the
data. In our experimental setting, we use the distributed persistent
archive pilot system between the National Archives, the University
of Maryland, and the San Diego Supercomputer Center, which
provides at least three replicas for each digital object based on the
federated SRB (Storage Resource Broker) grid technology [2], and
hence a copy can be corrected using a voting scheme over the
distributed archive. As for correcting erroneous CSI values, our
integrity checking prototype makes use of a three-way mirrored
registry of the CSI values, each of which is audited independently.
Hence the faulty CSI can be corrected using a correct replica from

the other registries. Note that the size of a registry grows in the
order of a few gigabytes per year (independent of the size of the
archive), and that the registry is not publicly accessible. Therefore
maintaining the integrity of the CSI registry can be done in a cost
effective way.

Updating Integrity Information
Updating IT becomes necessary either when a new stronger

hash function replaces the current hash function, or an object is
updated to a new version due to, for example, a format
transformation. In order to tackle the former case, there is a well-
known solution to deal with renewing the integrity information by
re-registering each related object with the old integrity token
attached to it (see for example [4]). Such a solution will ensure our
ability to verify the integrity of the object since its ingestion into
the archive as articulated in earlier work. This process increases
the size of the integrity token, but has no impact on the sizes of the
other integrity components. In the case when an object is subjected
to a transformation, we include the version number in addition to
the hash of the object and re-register the object (VN in Figure 1).
Different versions can be linked through the global ID of the
object using a dark archive, and hence it is possible to verify the
integrity of all the versions of each object starting with the current
one and ending with the first version ingested into the archive.
Note that the integrity of an object should be verified before it is
transformed into a new format to ensure its authenticity at this
time of its history.

ACE Prototype
The ACE prototype includes two major components: ACE

Integrity Management System (ACE-IMS) and ACE Audit
Manager (ACE-AM). The ACE-IMS is a server that issues
integrity tokens, preserves the CSI values, and computes and
publishes the witness values. The ACE-AM is a bridging
component between the archive and the ACE-IMS, which is local
to each archiving node. In a distributed setting, the audit managers
work asynchronously independent of each other, and hence copies
of the same object will be audited independently of each other.

The ACE-IMS, operating separately from the archive,
provides two important services: integrity token issuing and CSI
verification. The former service generates an integrity token upon
a request from the archive. Using the digital object and the
integrity token, the archive can at anytime construct the
cryptographic summary corresponding to the round in which the
digital object was registered. The CSI values will be maintained
separately and independently by the ACE-IMS.

In a typical archiving environment, the integrity tokens can be
stored either with the object itself or in a separate registry
dedicated to authenticity metadata. In our prototype, we use a
separate database to hold the integrity tokens.

The ACE Audit Manager (ACE-AM) is local to an archiving
node whose main function is to pass information between the
archiving node and the ACE-IMS. In particular, the ACE-AM
selects a digital object to be audited, either based on the local
periodic auditing policy of the archiving node or upon request
from an archive manager or a user. It then retrieves the digital
object’s integrity token, computes the hash of the object, and sends
this information to the ACE-IMS.

Figure 4 shows the overall ACE architecture assuming a
distributed archiving infrastructure. A centralized archiving
infrastructure will reduce to a single archiving node. The upper
section represents the archive, the middle section contains the
ACE-AM that is local to each archiving node, and the lower
section represents the ACE-IMS, which is completely outside the
archive.

Figure 4. ACE System Architecture

ACE Preliminary Performance Test
We have tested and evaluated ACE on a number of

collections, the largest of which is the NARA EAP (Electronic
Access Project) Image Collection consisting of over 1.1TB of
126,548 files. For the latter collection, we were able to fully audit
the 126,548 objects in about 15 hours while storing the data
remotely on a separate server. Most of the time was spent in
moving the data between the separate machines. We expect
performance to be much better in a production environment since
all the data movement will be carried out locally between the audit
manager and the local storage.

Conclusion
In this work, we have designed and implemented a platform-

independent system, called ACE, which addresses the integrity of
long-term archives. Although our approach is based on rigorous
cryptographic techniques, the computational requirements are
minimal. ACE is policy-driven and is able to continuously audit
the data and its integrity information. Moreover, ACE provides

rigorous methods for an independent auditor to certify the integrity
of any particular object of the archive.

Acknowledgments
This work was supported in part by the National Science

Foundation and the Library of Congress, contract IIS-0455995,
under the DIGARCH program.

References
[1] Tuomas Aura, Pekka Nikander, and Jussipekka Leiwo. DOS-resistant

authentication with client puzzles. In Bruce Christianson, Bruno
Crispo, and Mike Roe, editors, Proceedings of the 8th International
Workshop on Security Protocols, to appear in the Lecture Notes in
Computer Science series, Cambridge, UK, April 2000. Springe

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC Storage
Resource Broker. In Procs. of CASCON'98, Toronto, Canada, 1998.

[3] O. P. Damani, P. Y. Chung, Y. Huang, C. Kintala, and Y. M. Wang,
“ONE-IP: Techniques for hosting a service on a cluster of machines,”
in Proc. the Sixth Int. World Wide Web Conference, April 1997.

[4] Stuart Haber and Pandurang Kamat. “Content Integrity Service for
Long-Term Digital Archives.” In Proceedings of Archiving 2006,
May 2006, pp 159-164.

[5] Stuart Haber and W. Scott Stornella, “How to time-stamp a digital
document,” Journal of Cryptology, 1991.

[6] Ronald Jantz and Michael J. Giarlo. “Digital Preservation –
Architecture and Technology for Trusted Digital Repositories Reich.”
D-Lib Magazine, 7(6), June 2005.
<http://www.dlib.org/dlib/june05/jantz/06jantz.html>

[7] Lisa Kelly. “British Library secures integrity of digital archive.”
Computing. 25 Apr 25 2006.
<http://www.computing.co.uk/computing/news/2154704/british-li>

[8] T. T. Kwan, R. E. McGrath, and D. A. Reed, “NCSA's World Wide
Web Server: Design and Performance”, IEEE Computer, pp. 68-74,
Nov. 1995

[9] Petros Maniatis, TJ Guili, David S. H. Rosenthal and Mary Baker.
“THE LOCKSS Peer-to-peer Digital Preservation System.” ACM
TOCS, 23(1), February 2005.

[10] Ralph Merkle. “Protocols for public key cryptosystems,” In
Proceedings of the 1980 Symposium on Security and Privacy, IEEE
Computer Society Press, 1980, pp 122–133.

Author Biography
Sangchul Song is a doctoral student in Electrical and Computer

Engineering at University of Maryland, College Park, MD. Before joining
Maryland, he worked as a security software engineer for several years in
San Jose, CA. He received BE and MS degree at Korea University, Seoul,
Korea. At Maryland, he has been actively involved in the long term digital
preservation group led by Prof. Joseph JaJa.

Joseph JaJa currently holds the position of Professor of Electrical and
Computer Engineering with a joint appointment at the Institute for
Advanced Computer Studies at the University of Maryland, College Park.
Dr. JaJa received his Ph.D. degree in Applied Mathematics from Harvard
University and has since published extensively in a number of areas
including parallel and distributed computing, combinatorial optimization,
algebraic complexity, VLSI architectures, and data-intensive computing.
His current research interests are in parallel algorithms, digital
preservation, and scientific visualization of large scale data. Dr. JaJa has
received numerous awards including the IEEE Fellow Award in 1996, the
1997 R&D Award for the development software for tuning parallel
programs, and the ACM Fellow Award in 2000. He served on several
editorial boards, and is currently serving as a subject area editor for the
Journal of Parallel and Distributed Computing and as an editor for the
International Journal of Foundations of Computer Science.

