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Abstract 
We develop a new methodology to address the integrity of 

long term archives using rigorous cryptographic techniques. A 
prototype system called ACE (Auditing Control Environment) was 
designed and developed based on this methodology. ACE creates a 
small-size integrity token for each digital object and some 
cryptographic summary information based on all the objects 
handled within a dynamic time period. ACE continuously audits 
the contents of the various objects according to the policy set by 
the archive, and provides mechanisms for an independent third-
party auditor to certify the integrity of any object. In fact, our 
approach will allow an independent auditor to verify the integrity 
of every version of an archived digital object as well as link the 
current version to the original form of the object when it was 
ingested into the archive. We show that ACE is very cost effective 
and scalable while making no assumptions about the archive 
architecture. We include in this paper some preliminary results on 
the validation and performance of ACE on a large image 
collection. 

Introduction 
One of the most challenging problems facing digital archives 

is how to ensure the authenticity of their holdings over the long 
term (tens or hundreds of years). Unless the authenticity of an 
archive can be assured, it may not be possible to use the archive’s 
holdings to support any significant endeavor. Digital information 
is in general quite fragile, especially over time. Errors can be 
introduced because of hardware and media degradation, hardware 
and software malfunction, operational errors, security breaches, 
and malicious alterations, to name a few of the obvious ones. 
Other potential sources of errors, which are particularly relevant 
for long term archives, include major hardware and software 
systems changes due to technology evolution, and the possibility 
of major natural hazards and disasters such as fires, floods, and 
hurricanes. Two additional factors complicate this problem further. 
First, an object may be subjected to a number of transformations 
during its lifetime, including those migrative transformations due 
to format obsolescence. These transformations may alter the object 
in unintended ways. Second, most current integrity checking 
mechanisms are based on some type of cryptographic techniques, 
most of which are likely to become less immune to potential 
attacks over time and hence they will need to be replaced by 
stronger techniques. Therefore any approach to ensure the 
authenticity of a long term archive has to also be able to address 
these two problems as well.  

Several technical approaches have been proposed to address 
the long term integrity of digital archives, including those that 
appeared in [1], [3], [4], [6], [7], [8], and [9], but none seems to 

offer a solid approach that is applicable to the different emerging 
architectures for digital archives (including centralized and 
distributed archives) and that is capable to continually monitor and 
verify the integrity of the data in a cost effective way. 

In this paper, we introduce a general software environment 
called ACE (Auditing Control Environment), which is based on a 
rigorous cryptographic approach and yet quite efficient and can 
interoperate with any archiving architecture. Using the new 
framework, we introduce procedures to continually verify the 
integrity of the archive. Our approach will allow an independent 
auditor to verify the integrity of every version of an archived 
digital object as well as link the current version to the original 
form of the object when it was ingested into the archive. 

Specifically, ACE is based on creating a small-size integrity 
token for each digital object upon its deposit into the archive (or 
upon registration of the object of an existing archive), to be stored 
either with the object itself or in a registry at the archive as 
authenticity metadata. Cryptographic summary information that 
depends on all the objects registered during a dynamic time period 
is stored and managed separately. The summary information is 
very compact and is of size independent of the number or sizes of 
the objects ingested. Regular audits will be continuously 
conducted, which will make use of the integrity tokens and the 
summary integrity information to ensure the integrity of both the 
objects and the integrity information. In our prototype, audits can 
also be triggered by an archive manager or by a user upon data 
access. However we are assuming that the auditing services are not 
allowed to change the content of the archive even if errors are 
detected. The responsibility for correcting errors is left to the 
archive administrator after being alerted by the auditing service. 

Overview of the ACE Approach 
ACE adopts a two-tier approach. The first tier deals with 

creating a small size Integrity Token (IT) (Figure 1) for each 
digital object upon its deposit into the archive (or upon registration 
of the object of an existing archive), to be stored either with the 
object itself or in a registry at the archive as authenticity metadata. 
Cryptographic Summary Information (CSI) depending on all the 
objects registered during a dynamically adjustable time interval is 
stored and managed independently of and separately of the 
archive. The ITs and CSIs are used to continually verify the 
authenticity of the corresponding digital object. The second tier 
involves the generation of very compact witness values that 
cryptographically depend on all the objects ingested during a 
relatively long time period (such as a week).  

 



 

 

 
Figure 1. Integrity Token 

ACE: First Tier 
The first tier integrity information types (IT and CSI) are 

generated in two steps; aggregative registration and hash-linking. 
The aggregative registration of the objects is typically invoked 
during ingestion, and composed of aggregation rounds. The 
interval of each round is determined dynamically based on the 
number of registration requests and time passed. This dynamic 
aggregation period allows us to control both the maximum size of 
ITs and maximum wait-time for registration. During an 
aggregation round, the hashes of all the objects submitted for 
registration as well as random hashes as necessary are aggregated 
using an authentication tree such as the Merkle’s tree [10]. Note 
that, in practice, the hash of the object is submitted as a part of the 
registration request (IT Req in Figure 1). The internal node in the 
authentication tree has the hash value of the concatenated hashes at 
the children. We insert random hash values into each round to 
ensure that the tree will always have a certain minimal number of 
leaves. Figure 2 shows an authentication tree for a round involving 
eight objects with hash values 7210 ,...,,, hhhh . 

 
Figure 2. Authentication Tree (IT Reqi contains hi) 

 
Note that the value at the root is a hash value that depends in 

a cryptographic sense on all the objects processed during a round. 
For each object, we assemble a short list of hashes from the tree, 
called an aggregation proof, to enable the derivation of the root 
value from the hash of the object. We time stamp all the objects 
participating in each round with the same time stamp. 

The second step consists of linking the hash value generated 
at each round with the hash values generated at the previous 
rounds using a structure that depends on the linking scheme used. 
In our prototype, we use a simple binary linking scheme that 
computes the hash value of the previous Cryptographic Summary 
Information (CSI) concatenated with the hash value of the current 
round as illustrated in Figure 3. This is the same scheme as 
suggested in [5] and [24]. In this binary linking scheme, the only 
two data necessary to construct CSI is the previous CSI and the 
root value of the authentication tree. The former is included in IT 
(LSI in Figure 1), whereas the latter can be re-computed using the 
aggregation proof. In the other words, IT has all the information to 
re-compute the corresponding CSI at any time. 

 
Figure 3. CSI Chain 

ACE: Second Tier 
As mentioned before, the second tier deals with generating 

witness values that will ensure the integrity of CSIs which are 
generated from the first tier operations. A witness value is 
constructed by aggregating the CSIs that have been created over 
each week, using an authentication tree whose root value becomes 
the witness value of the week. These witness values are published 
over the Internet at well-known public sites offering storage, 
library, or publication services. Since these witness values are 
small in size (1KB~2KB a year), we also store them on a CD 
ROM (in fact, on multiple CD-ROMs that are refreshed on a 
regular basis). ACE currently uses the Internet newsgroups at 
Google, Yahoo, and MSN as publication services. 

ACE Procedures 

Registration 
Objects are typically registered with ACE during the 

ingestion process. A registration request involves creating a 
registration token (IT Req in Figure 1), and submitting the token to 
the ACE server. The ACE server generates the IT and the CSI, and 
returns IT to the requester. The returned IT is locally stored with 
proximity to the object itself, whereas CSI is managed internally 
within the ACE server. 

Verification and Auditing 
ACE provides two types of integrity auditing, the first 

involves a process running on a moderately secure server external 
to the archive,  which verifies the integrity of the archive’s content 
in a periodic, regular fashion; the second involves an auditing 
process triggered by an archivist or by a user upon data access.  A 
simple way to verify the integrity of an object involves the 
following steps 



 

 

Step 1. Compute the hash of the given object and compare it to 
the hash stored in the object’s token. Proceed to the next 
step if there is an agreement; otherwise, either the object 
or its token has been modified. In the latter case, we can 
distinguish between the two possibilities by proceeding to 
the next step as well 

Step 2. Use the computed hash value in combination with the 
proof in the token to determine the CSI of the round 
during which the object was injected into the system. An 
agreement indicates that the object is intact (correct the 
hash value stored in the token if necessary).  

The decision on the integrity of the given object is made only 
if there is an agreement in Step 2. In case of a disagreement, we 
report that the object may be corrupt, and leave it up to the archive 
manager to decide whether or not to verify the integrity of the 
corresponding CSI value or compare the corresponding object with 
another copy in the archive. 

Considering that it is more likely to have a corrupted object 
than a corrupted integrity token (integrity tokens do not have to be 
made publicly available), in a practical implementation, one can 
choose to have two separate processes – one that performs only 
Step 1, and the other performs Step 2. That is, the object integrity 
and the token integrity are verified separately and independently 
according to the policies set by the archive and the integrity 
management system. The two can be linked together whenever 
necessary using the above procedure. 

Witness Publication 
The ACE server constantly runs a process that constructs and 

publishes witnesses on a weekly basis. The fact that these 
witnesses are cryptographically dependent on CSIs maintained 
within the server, along with the assumption that the published 
witnesses are almost impossible to tamper with, allows us to 
ensure the integrity of CSIs through the witness validation 
procedure discussed below.  

Witness Validation 
In this internal procedure, the integrity of each CSI is checked 

using witnesses previously published. In particular, for each 
witness value W and for each CSI value computed within that 
week, we check to see if the proof attached to the CSI value yields 
W. In the affirmative, the CSI value is correct. Otherwise, it is not. 

In the case when the object or the CSI is determined to be 
incorrect, our verification service notifies the archive manager 
about the faulty object, and it is left up to the archive to take the 
appropriate action. We believe that an integrity verification service 
should not be allowed to modify anything in the archive. Its main 
function is to continually monitor and verify the authenticity of the 
data. In our experimental setting, we use the distributed persistent 
archive pilot system between the National Archives, the University 
of Maryland, and the San Diego Supercomputer Center, which 
provides at least three replicas for each digital object based on the 
federated SRB (Storage Resource Broker) grid technology [2], and 
hence a copy can be corrected using a voting scheme over the 
distributed archive. As for correcting erroneous CSI values, our 
integrity checking prototype makes use of a three-way mirrored 
registry of the CSI values, each of which is audited independently. 
Hence the faulty CSI can be corrected using a correct replica from 

the other registries. Note that the size of a registry grows in the 
order of a few gigabytes per year (independent of the size of the 
archive), and that the registry is not publicly accessible. Therefore 
maintaining the integrity of the CSI registry can be done in a cost 
effective way. 

Updating Integrity Information 
Updating IT becomes necessary either when a new stronger 

hash function replaces the current hash function, or an object is 
updated to a new version due to, for example, a format 
transformation. In order to tackle the former case, there is a well-
known solution to deal with renewing the integrity information by 
re-registering each related object with the old integrity token 
attached to it (see for example [4]). Such a solution will ensure our 
ability to verify the integrity of the object since its ingestion into 
the archive as articulated in earlier work. This process increases 
the size of the integrity token, but has no impact on the sizes of the 
other integrity components. In the case when an object is subjected 
to a transformation, we include the version number in addition to 
the hash of the object and re-register the object (VN in Figure 1). 
Different versions can be linked through the global ID of the 
object using a dark archive, and hence it is possible to verify the 
integrity of all the versions of each object starting with the current 
one and ending with the first version ingested into the archive. 
Note that the integrity of an object should be verified before it is 
transformed into a new format to ensure its authenticity at this 
time of its history. 

ACE Prototype 
The ACE prototype includes two major components: ACE 

Integrity Management System (ACE-IMS) and ACE Audit 
Manager (ACE-AM). The ACE-IMS is a server that issues 
integrity tokens, preserves the CSI values, and computes and 
publishes the witness values. The ACE-AM is a bridging 
component between the archive and the ACE-IMS, which is local 
to each archiving node. In a distributed setting, the audit managers 
work asynchronously independent of each other, and hence copies 
of the same object will be audited independently of each other. 

The ACE-IMS, operating separately from the archive, 
provides two important services: integrity token issuing and CSI 
verification. The former service generates an integrity token upon 
a request from the archive. Using the digital object and the 
integrity token, the archive can at anytime construct the 
cryptographic summary corresponding to the round in which the 
digital object was registered. The CSI values will be maintained 
separately and independently by the ACE-IMS.  

In a typical archiving environment, the integrity tokens can be 
stored either with the object itself or in a separate registry 
dedicated to authenticity metadata. In our prototype, we use a 
separate database to hold the integrity tokens. 

The ACE Audit Manager (ACE-AM) is local to an archiving 
node whose main function is to pass information between the 
archiving node and the ACE-IMS. In particular, the ACE-AM 
selects a digital object to be audited, either based on the local 
periodic auditing policy of the archiving node or upon request 
from an archive manager or a user. It then retrieves the digital 
object’s integrity token, computes the hash of the object, and sends 
this information to the ACE-IMS.  



 

 

Figure 4 shows the overall ACE architecture assuming a 
distributed archiving infrastructure. A centralized archiving 
infrastructure will reduce to a single archiving node. The upper 
section represents the archive, the middle section contains the 
ACE-AM that is local to each archiving node, and the lower 
section represents the ACE-IMS, which is completely outside the 
archive. 

 
Figure 4. ACE System Architecture 

ACE Preliminary Performance Test 
We have tested and evaluated ACE on a number of 

collections, the largest of which is the NARA EAP (Electronic 
Access Project) Image Collection consisting of over 1.1TB of 
126,548 files. For the latter collection, we were able to fully audit 
the 126,548 objects in about 15 hours while storing the data 
remotely on a separate server. Most of the time was spent in 
moving the data between the separate machines. We expect 
performance to be much better in a production environment since 
all the data movement will be carried out locally between the audit 
manager and the local storage. 

Conclusion 
In this work, we have designed and implemented a platform-

independent system, called ACE, which addresses the integrity of 
long-term archives. Although our approach is based on rigorous 
cryptographic techniques, the computational requirements are 
minimal. ACE is policy-driven and is able to continuously audit 
the data and its integrity information. Moreover, ACE provides 

rigorous methods for an independent auditor to certify the integrity 
of any particular object of the archive. 
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