
An Implementation of the Audit Control Environment
(ACE) to Support the Long Term Integrity of Digital

Archives
Michael Smorul

Institute for Advanced Computer
Studies

University of Maryland, College Park
College Park, MD 20742 USA

toaster@umiacs.umd.edu

Sangchul Song
 Department of Electrical and

Computer Engineering
Institute for Advanced Computer

Studies
University of Maryland, College Park

College Park, MD 20742 USA

scsong@umiacs.umd.edu

Joseph JaJa
 Department of Electrical and

Computer Engineering
Institute for Advanced Computer

Studies
University of Maryland, College Park

College Park, MD 20742 USA

joseph@umiacs.umd.edu

ABSTRACT
In this paper, we describe the implementation of the Audit
Control Environment (ACE)[1] system that provides a scalable,
auditable platform for ensuring the integrity of digital archival
holdings. The core of ACE is a small integrity token issued for
each monitored item, which is part of a larger, externally
auditable cryptographic system. Two components that describe
this system, an Audit Manager and Integrity Management
Service, have been developed and released. The Audit Manager
component is designed to be installed locally at the archive, while
the Integrity Management Service is a centralized, publically
available service. ACE allows for the monitoring of collections on
a variety of disk and grid based storage systems. Each collection
in ACE is subject to monitoring based on a customizable policy.
The released ACE Version 1.0 has been tested extensively on a
wide variety of collections in both centralized and distributed
environments.

Categories and Subject Descriptors
H.3.4 [Information Storage and Retrieval]: Systems and
Software; H.3.7 [Information Storage and Retrieval]: Digital
Libraries

Keywords
ACE, Data Integrity, Digital Archiving.

1. INTRODUCTION
In this paper, we introduce a general software environment called
ACE (Auditing Control Environment), which is based on a
rigorous cryptographic approach and yet quite efficient and can
interoperate with any archiving architecture. Using the new
framework, we introduce procedures to continually verify the
integrity of the archive. Our approach will allow an independent

auditor to verify the integrity of every version of an archived
digital object as well as link the current version to the original
form of the object when it was ingested into the archive.

Specifically, ACE is based on creating a small-size integrity token
for each digital object upon its deposit into the archive (or upon
registration of the object of an existing archive), to be stored
either with the object itself or in a registry at the archive as
authenticity metadata. Cryptographic summary information that
depends on all the objects registered during a dynamic time
period is stored and managed separately. The summary
information is very compact and is of size independent of the
number or sizes of the objects ingested. Regular audits will be
continuously conducted, which will make use of the integrity
tokens and the summary integrity information to ensure the
integrity of both the objects and the integrity information. In our
implementation, audits can also be triggered by an archive
manager or by a user upon data access. However we are assuming
that the auditing services are not allowed to change the content of
the archive even if errors are detected. The responsibility for
correcting errors is left to the archive administrator after being
alerted by the auditing service.

2. Overview of ACE Integrity Approach
ACE adopts a two-tier approach. The first tier deals with creating
a small size Integrity Token (IT) (Figure 1) for each digital object
upon its deposit into the archive (or upon registration of the object
of an existing archive), to be stored either with the object itself or
in a registry at the archive as authenticity metadata.
Cryptographic Summary Information (CSI) depending on all the
objects registered during a dynamically adjustable time interval is
stored and managed independently of and separately of the
archive. The ITs and CSIs are used to continually verify the
authenticity of the corresponding digital object. The second tier
involves the generation of very compact witness values that
cryptographically depend on all the objects ingested during the
previous day. This work is licensed under the Creative Commons Attribution-

Noncommercial-No Derivative Works 3.0 Unported license. You are free
to share this work (copy, distribute and transmit) under the following
conditions: attribution, non-commercial, and no derivative works. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nc-
nd/3.0/.

DigCCurr2009, April 1-3, 2009, Chapel Hill, NC, USA

2.1 Tier 1
The first tier integrity information types (IT and CSI) are
generated in two steps; aggregative registration and hash-linking.
The aggregative registration of the objects is typically invoked
during ingestion, and composed of aggregation rounds. The

164

interval of each round is determined dynamically based on the
number of registration requests and time passed. This dynamic
aggregation period allows us to control both the maximum size of
ITs and maximum wait-time for registration. During an
aggregation round, the hashes of all the objects submitted for
registration as well as random hashes as necessary are aggregated
using an authentication tree such as the Merkle’s tree [2]. Note
that, in practice, the hash of the object is submitted as a part of the
registration request (IT Req in Figure 1). The internal node in the
authentication tree has the hash value of the concatenated hashes
at the children.

Figure 1: Integrity Token
We insert random hash values into each round to ensure that the
tree will always have a certain minimal number of leaves. Figure
2 shows an authentication tree for a round involving eight objects
with hash values .7210 ,...,,, hhhh

Figure 2: Authentication Tree (IT Reqi contains hi)

Note that the value at the root is a hash value that depends in a
cryptographic sense on all the objects processed during a round.
For each object, we assemble a short list of hashes from the tree,
called an aggregation proof, to enable the derivation of the root
value from the hash of the object. We time stamp all the objects
participating in each round with the same time stamp.

The second step consists of linking the hash value generated at
each round with the hash values generated at the previous rounds
using a structure that depends on the linking scheme used. In our
prototype, we use a simple binary linking scheme that computes
the hash value of the previous Cryptographic Summary
Information (CSI) concatenated with the hash value of the current

round as illustrated in Figure 3. This is the same scheme as
suggested in [3]. In this binary linking scheme, the only two data
necessary to construct CSI is the previous CSI and the root value
of the authentication tree. The former is included in IT (LSI in
Figure 1), whereas the latter can be re-computed using the
aggregation proof. In the other words, IT has all the information
to re-compute the corresponding CSI at any time.

Figure 3: CSI Chain

2.2 Tier 2
As mentioned before, the second tier deals with generating
witness values that will ensure the integrity of CSIs which are
generated from the first tier operations. A witness value is
constructed by aggregating the CSIs that have been created over
each day, using an authentication tree whose root value becomes
the witness value of the day. These witness values are published
over the Internet at well-known public sites offering storage,
library, or publication services. Since these witness values are
small in size (less than 100KB a year), we also store them on a
CD ROM (in fact, on multiple CD-ROMs that are refreshed on a
regular basis). Printed versions of this witness are also possible as
one line per witness would only require around 30 pages of paper
for an entire year! ACE currently uses the Internet newsgroups at
Google and UMIACS to publish witness values.

3. ACE Workflow
Two different workflows have been implemented in the first
release of ACE. The first is a token registration workflow where
new Integrity Tokens are issued from an IMS. The second
workflow is the validation workflow where previously issued
tokens are used to validate the integrity of files and the token
itself.
Registration and validation is performed by an Audit Manager
(AM). This audit manager runs physically close to the data that is
to be monitored. It is designed to have bit-level access to the data
so that it may read all monitored files and generate digests across
those files.
The AM requests ITs from an Integrity Management Service
(IMS). The IMS performs round aggregation and witness
generation as described above. In addition, it also acts as a remote
repository for witness values and CSIs. Of course, to fully audit
the IMS, a 3rd party would use their own copy of the witness
value.

165

3.1 Token Issuing
Tokens are issued as part the first tier described earlier. The AM
generates a SHA-256 digest of the file to be monitored. This
generated digest and file name is submitted to the IMS for
inclusion in the current round.

The submitted token is aggregated with other requests during the
same time interval. The resulting CSI is stored in a database to be
later used for witness generation and IT validation. For each
request, an IT is generated and returned to the client. This flow is
shown in Figure 4.

Figure 4: Token Request Workflow

3.2 File and Token Validation
File and token validation occur on the AM subject to a specified
policy. This policy may vary between collections. The AM
locally stores a copy of digests for each item in a collection.
Periodically, each monitored item is read, a digest is calculated
and compared with the stored value.

Token validation requires showing the stored digest has not been
altered. Validation is done by linking the stored digest to an IMS
CSI. This involves calculating the round CSI using the
authentication tree stored in the IT and the stored item’s digest.
The IMS is then queried to retrieve the CSI for the round where
the IT was issued. The returned CSI is compared to the calculated
CSI and if it matches, the IT and digest are considered
trustworthy to a high probability.

Figure 5: Token and Digest Validation

4. System Components
Version 1.0 of ACE has seen the release of three components. The
first is an implementation of the Integrity Management Service
which performs round aggregation, token issuing and witness
publication. Second is a Java programming interface that allows
for high performance access to IMS functionality while being
simple to use. Third is a web-based Audit Manager designed to be
installed by individual archives to monitor their collections.

Of these components, most archives will only need to concern
themselves with managing a local Audit Manager. The IT
requirements for installing an AM were designed to be minimal,
requiring only MySQL, Java, and Apache Tomcat.

4.1 Integrity Management Service (IMS)
The IMS issues client tokens, stores CSI round data, and
publishes a witness value each night. The IMS has been
implemented as a Java EE application that provides all IMS
functionality as a set of web services. A publically available IMS
is running at the University of Maryland at the address
ims.umiacs.umd.edu.

The IMS supports two types of aggregation rounds. First is a
timed round that will terminate once a timeout or request
threshold is reached. The second round is an immediately
generated round requested by a client. The immediately requested
round will cause the IMS to close any open round, perform
aggregation and issue Integrity Tokens.

The IMS offers several web services that allow tokens to be
issued and validated. These calls are described below

� requestTokensAsync – A non-blocking request for a
token or multiple tokens. A receipt is returned to the
client that can be used to later retrieve the issued tokens.
Requests are added to the current round.

� retrieveTokens – Called after requestTokensAsync to
retrieve the tokens responses. This must be called after
the current round closes or an error will be returned to
the client indicating tokens have not yet been
calculated.

� requestTokensImmediate – A blocking request for a
token or multiple tokens. The call requests the tokens be
added to the current round and the round be closed. The
call will return the requested tokens. The round may
include hashes other than ones requested in the call if
previous calls to requestTokensAsync were made in the
current round.

� getRoundSummaries – This call returns a list of CSIs
for the requested rounds. This will be used by clients to
verify the integrity of its tokens and hashes.

The IMS is backed by a MySQL database that stores unclaimed
token responses, round summaries, and nightly witness values.

Nightly witness publication is handled through an API that allows
for pluggable publication methods. The WitnessPublisher API
provides an abstract class that additional publication methods

166

must extend. The IMS currently supports an e-mail based
publication service.

The IMS installed at umiacs has two e-mail targets configured.
First is a listserv hosted at UMIACS called ims-witness available
at: http://mailman.umiacs.umd.edu/mailman/listinfo/ims-witness.

Second, a Google group has been created called ace-ims-witness
which is available at http://groups.google.com/group/ace-ims-
witness. Both mail lists are publically available, allowing anyone
to subscribe and receive nightly witness reports. In addition, both
lists archive all published witness values.

Archives that wish to challenge the integrity of the IMS in the
future should subscribe to one or both of these lists. While public
archives of past witness values are available, the values may be
considered more trustworthy as an archive can show the
provenance of a witness value from publication onward.

4.2 IMS API
A Java API has been written to allow for easy high performance
communication with the ACE IMS. The API provides a
multithreaded library that allows a client to serially request tokens
or token validation while batching those requests and transmitting
them in a separate tread. Results are returned to a client through a
registered callback. This allows clients to use the bulk request
ability of the IMS without having to rework their process to
account for the batch processing.

The core of the IMS API is the IMSService class. This class
provides a connection to all IMS functionality as well as factory
methods for creating token request and validation processes.
The token request and validation processes consist of two parts.
First is a queue that clients can serially add requests into. The
queue will accumulate requests until either a maximum queue size
or timeout is reached. Once either condition occurs, a background
thread will be notified. This background thread will copy the
work queue and send a request to the IMS. During this process,
the client is free to add items to the queue. When the IMS
response is complete, the background thread will notify a client
supplied callback of the IMS response. Caution must be taken by
the client to ensure the callback it supplies is thread-safe with
respect to the client thread.

4.3 Audit Manager
The ACE Audit Manager is a Tomcat based Java web application
that actively monitors collections on a variety of storage
resources. The AM provides a simple web-based dashboard view
of all collections that are stored in an archive. After installation of
an AM, management of collections is designed to be handled by
archivists rather than local IT administrators. A single AM is able
to monitor multiple collections on a variety of storage platforms.

An AM handles both registration of new items and monitoring of
existing items. The AM is able to request tokens for new items in
collections, validate items against their stored digests, and verify
those digests using integrity tokens and the IMS. Each collection
is able to specify a different audit policy. It also provides
complete logging of all actions performed against a collection as
well as extensive browsing and reporting capability.

4.3.1 Design
The Audit manager is designed to support multiple types of
storage. To do this, it must make a few assumptions about the
types of storage it will be operating on. First, this storage is
hierarchical. This is generally not a problem, as most filesystems
and storage systems are hierarchical in nature. Second, all items
are discrete objects. Objects should not be compound objects.

The audit manager stores items in a collection, organized by the
parent/child relationship of the items. This allows administrators
to browse collections in the same way they would browse files on
a hard drive. For each item, the following information is stored

The Audit Manager has a Service Provider Interface (SPI) that
allows drivers for other storage mediums to be added. While the
AM is able to store all integrity information, it requires the driver
to provide a gateway to the underlying storage system and handle
connection specific information.

Using the SPI, we have implemented interfaces to the Storage
Resource Broker[4], the Integrated Rule-Oriented Data
System[5], storage local to the Audit Manager server, and a
benchmarking driver to determine maximum performance of a
particular AM installation.

4.3.2 Collection Registration and Audit
Collection registration involves gathering all necessary
information needed for the AM to communicate with the
underlying storage. After a collection has been registered, the AM
will perform the first audit of a collection in which it generates
tokens for all items in that collection. The following steps
illustrate the registration process.

1. Display registration page to client requesting collection
root and storage type/driver.

2. Display additional configuration parameters (username,
password) as required by the driver. Validate all
configuration parameters against the driver.

3. Start a collection audit. Request the driver supply a list
of all items in a collection

4. For each item in the collection, register the new item in
the database, marking it active, but missing a token.

5. Use the IMS Api to request a token for the new item’s
hash.

6. Receive notification that a token has been issued.

7. Register new token in a database.

8. Finish Audit.

4.3.3 Collection Metadata
During the auditing process a large amount of metadata is
collected for each collection. Each item in the collection has
several metadata elements stored to perform audits. In addition,
each audit, additional metadata is generated in the form of event
logging. These events track every state change of an item while it
is under the supervision of ACE.

For each item, the following metadata attributes are collected:

167

� Item path – Complete path relative to the root of the
collection

� First Seen – Date this item was added to the audit
manager.

� Last Seen – Last time this item was read and validated.
For the initial registration, this will be the first seen
date.

� State – Current state of the file. Can be one of the
following:

o A – Active, item is intact, readable and
digests match

o C – Item is present, but its digest doesn’t
match the stored value

o M – Item is missing or cannot be fully read.

o T – Item is registered, but a token has not
been received yet.

� Change Date – Date the item’s state was last changed.
For new items, this will be the date a token was issued.

� Token – Token containing digest and IMS response.

A number of events that change the state of items in a collection
will be encountered. These different events have been classified
and are recorded in the audit manager. Each event contains the
following information

� Event Type – The type of event that occurred.
Currently, there are 19 different types of generated
events.

� Description – detailed description containing any error
message or other information that caused this event

� Session – Audit session this event occurred in

� Date – Date this event occurred.

Events in the AM are grouped by a session identifier. This session
identifier connects an event with other events that occurred during
the same audit. If only one audit pass has been performed on a
collection, then all events associated with that collection will have
the same session id. Sessions allow viewing of any events that
occurred during a given audit.

Audit messages can be group into two broad categories, normal
operating messages and error messages. Normal messages show
new files and tokens being added to a collection while error
messages show corrupt files, tokens, or storage errors.

Managers are able to filter by item path, collection, event
category, and session. This allows for complex queries such as
‘show all events for file X in this session’ or ‘show all errors ever
registered for a collection’.

4.3.4 Browsing and Collection Reporting
The Audit Manager provides for collection browsing and
reporting. The ACE browser provides a file-system view of items
stored in a collection. Items are browsed by expanding folders and

clicking on files to view details. From the Browse interface, it’s
possible to view a token issued to a file, remove a file or
directory, download the content of a file, and view the event log
for a file.

The Audit Manager is able to generate a report showing items that
are corrupt, missing, or otherwise not intact. From this report,
managers are able to view log entries associated with flagged
items or remove the item from monitoring if the item is later
deemed correct. Removal and re-registration of items may be
necessary if a new version of an item was added to the archive.

Reports comparing collections can also be generated. For
example, a depositor may have a list of digests and filenames they
believed were deposited into an archive. Using this list, they can
compare the collection in ACE with what they believe was
deposited.

In addition to generating web page reports, all reports, status, item
details, and event log queries can be exported in JSON
(JavaScript Object Notation) format. This allows libraries to
include integrity information from ACE in any collection portals
they may develop.

4.3.5 Access Control
The Audit Manager provides access controls over to various
functions of the web portal. This allows managers to create
different usernames and passwords having different roles within
the Audit Manager. For example, an account may be created for
‘browse’ level access which gives read-only access to collections
and items in the collection. The browse account may be able to
view log files, tokens, file information, but not able to remove
items from monitoring or modify collection parameters. The
following table shows which access controls are available.

Table 1: Access Permissions

Access Description
Collection

Modify
Modify the connection parameters for a
collection.

Browse Browse files in a collection and display general
metadata

Audit Start a file or token audit on a collection

View Report View a report showing missing or corrupt items

Remove Item Remove an item from monitoring

Users Add or modify users
Download

Token Down integrity tokens attached to files

Download
Item Download the monitored file

5. ACE Use Cases
ACE has been extensively tested, first in the Transcontinental
Persistent Archival Prototype (TPAP) and second in the
Chronopolis Project. These two testbeds tested ACE against
individual collections several terabytes in size and containing
several million files. In addition, the TPAP testbed also spanned
three different storage types including iRODS[4], SRB[5], and

168

local file storage. Overviews of these collections are shown in
table 2.

Table 2: Collection Overview

Installation Collections Items Log Events

TPAP 32 1,505,392 3,030,152

Chronopolis 4 3,903,922 8,059,007

The TPAP installation of ACE is currently being used to monitor
files in a variety of storage architectures at the University of
Maryland and San Diego Supercomputing Center. The installation
supports collections stored on both the SRB and iRODS. Data is a
mix of small text files and large images.

The Chronopolis installation actually involves three independent
Audit Monitors installed at the University of Maryland, San
Diego Supercomputing Center, and the National Center for
Atmospheric Research. Collections are stored in the SRB. Data
from the three installations are aggregated into a common portal.
This allows depositors to view the overall status of their
collections easily without connecting to each site. In addition, the
collection comparison functionality is used to ensure that identical
copies of each collection exist at all sites.

Collections in Chronopolis vary in both total file count and
average file size, allowing us to explore how file size affects
collection auditing. The current archive policy is to audit files at
UMIACS every 30 days. In Chronopolis, we discovered most of
the delay in processing small files was due to SRB overhead, to
prevent this from negatively impacting audit speed, ACE audited
each collection using 5 threads reading files in parallel. This
allowed metadata operations to run in parallel with data retrieval
operations. The table below shows the results of these audits.
While the SRB can sustain more simultaneous, no more than 5
threads were used to ensure other access to the archive was not
impeded.

Table 3: Chronopolis Collections

Installation Files Directorie
s Size Time(h)

CDL 46,762 28 4,291 Gb 20:32

SIO-GDC 197,718 5,230 815 Gb 6:49

ICPSR 4,830,625 95,580 6,957 Gb 122:48

NC-State 608,424 42,207 5,465 Gb 32:14

A usability test was performed over the summer of 2008 at the
SAA Electronic Records Summer Camp. This test involved over
40 archivists and librarians from a variety of non-technical
backgrounds. Participants were asked to use the Audit Manager to
audit collections stored in the iRODS environment. Most
participants were able to successfully audit their collections with
less than two hours exposure to the technology.

6. CONCLUSION
In this paper we have described a software system that
implements the ACE platform integrity management. We have
described an Audit Manager component that is a low
maintenance, highly scalable solution for archives and digital
libraries to monitor the integrity of their digital assets.

7. REFERENCES
[1] Song, S. and JaJa, J. ACE: A Novel Software Platform to

Ensure the Integrity of Long Term Archives. in Archiving
2007. 2007: IS&T.

[2] Ralph Merkle. “Protocols for public key cryptosystems,” In
Proceedings of the 1980 Symposium on Security and
Privacy, IEEE Computer Society Press, 1980, pp 122–133.

[3] Stuart Haber and W. Scott Stornella, “How to time-stamp a
digital document,” Journal of Cryptology, 1991.

[4] A Prototype Rule-based Distributed Data Management
System Rajasekar, A., M. Wan, R. Moore, W. Schroeder,
HPDC workshop on "Next Generation Distributed Data
Management", May 2006, Paris, France.

[5] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC
Storage Resource Broker. In Procs. of CASCON'98,
Toronto, Canada, 1998

169

