

Search and Access Strategies for Web Archives
Sangchul Song, Joseph JaJa; Institute for Advanced Computer Studies, Department of Electrical and Computer Engineering,
University of Maryland, College Park, Maryland, USA

Abstract
The Web has become the main publication medium world-

wide, covering almost every facet of human activity. In many
cases, the Web is the only medium where such information is
recorded. However, the Web is an ephemeral medium whose
contents are constantly changing and new information is rapidly
replacing old information, and hence the critical importance of
establishing web archives to capture at least partially the
information that is deemed important in the long term. In this
work, we address search and access strategies of web archives,
and outline our approach for carrying out effective search and
retrieval of archived web contents.

In a typical web archive, the contents are highly unstructured
and interlinked within a temporal context. Over time, such
archived web contents can present an unprecedented opportunity
for information and knowledge discovery in linking and fusing the
appropriate information spread over several contextual domains,
including the temporal domain. We present in this paper a number
of methods for searching web archives which will significantly
contribute towards realizing this opportunity. We also address
different presentation strategies of the contents of interest, and
extend information retrieval techniques to include temporal
contexts seamlessly into the architecture.

Introduction
Web archives will in general offer unique opportunities for

knowledge discovery due to the richness of their contents
extending over significant periods of time. Web contents
encompass a wide variety of objects such as html pages,
documents, multimedia files, scripts, etc., as well as, linking
structures between these objects. These contents can be very
dynamic, changing many times during a single day, or can be
relatively static. A critical component of a web archive is to
capture the linking structures and organize the archived pages in
such a way that future generations of users will be able to access
and navigate through the archived web information in the same
way as in the original linked structure and within the same
temporal context. Clearly effective information discovery and
fusion, search and retrieval strategies are needed to exploit the
opportunities presented by almost any significant long term web
archive.

In general, traditional digital library access techniques are not
powerful enough to enable information exploration and discovery
for a web archive unless the archive is rather specialized. A more
promising approach can be based on web search technologies and
information retrieval techniques. A substantial amount of work
related to web searching and information retrieval has been done,
and the resulting technologies have been extremely effective in
enabling effective search and retrieval on the Web. In this work,
we extend these strategies to web archives for which information

discovery and search are conducted within a temporal context. In
particular, we have developed a search interface and underlying
technologies that also enable fusion and summarization of search
results so as to enhance information exploration and discovery.

In this paper, we present an overview of our methodologies to
address the following aspects of search and access of web
archives:

• Development of a search interface to explore and search for

information in a web archive. The returned results are
presented in a way that is conducive to information
exploration and discovery.

• Development of a framework that enables the effective
ranking and evaluation of archived web contents within a
temporal context as specified by the user’s query.

• Development of methods to determine the relevance of a
group of web objects within the temporal context. A group
can consist of a series of temporally-contiguous versions of a
single URL, or of web objects archived within some time
span.

• Development of a framework to enable effective search using
keywords and time spans.

In the next section, we review the most important access

methods currently in use by some notable web archives. We then
explain our approach and the related methods. We end with some
conclusions.

Access Methods for Web Archives
In this section, we review some of the currently used access

methods to search the contents of a web archive, starting with
arguably the most well-known web archive, namely the Internet
Archive.

Chronological Listing
 A simple access method is to list the archive’s holdings in

chronological order. For example, a user of the Wayback Machine
enters a URL to which a chronological list of the dates when the
corresponding web object was archived is returned. The user then
selects one of these dates to view the archived contents on that day.
This is currently the prevalent access method that large-size
archives such as the Internet Archive [3] and European Archives
[2] support. Figure 1 shows a snapshot of a chronological list
generated through the Internet Archive’s Wayback Machine.

A significant drawback of this approach is the fact that the
user is required to know in advance the exact URL of interest. This
is a strong requirement that can severely limit the future use of a
web archive. Note that even if the URL is currently well-known,
this specific URL may be completely forgotten in the future.

Figure 1. The Wayback Machine

Directory Access
Providing a directory access involves the categorization of

contents into some predetermined hierarchy through which users
can navigate down until they can find the desired object. An
example of such an organization of archived web contents is the
Minerva project [4] at the Library of Congress, which collected
web contents pertaining to The United States Presidential Election
of 2000, the September 11, 2001 Attack, the United States House
of Representatives Elections of 2002, and the 107th United States
Congress, among others. Each collection has a limited scope and
the intention was to create catalog records (MARC) for each of the
websites.

Figure 2. Minerva - the Library of Congress Web Archives

However, as is, this scheme has a serious scalability problem,
in addition to the fact that the classification hierarchy is likely to
evolve over time, which will be expensive to update for large
archives. For some collections such as the 2000 presidential
election that has about 800 sites archived daily between August 1,
2000 and January 21, 2001, the categorization was possible.
However, for many other collections such as the September 11 that
archived over 30,000 sites, only about 2,300 sites were selected for
cataloguing.

It is noteworthy that there has been a community-based,
collaborative, open web categorization project called ODP (Open
Directory Project) [1], where a web directory is constructed and
maintained by a vast, global community of volunteer editors. Their
web directory is currently serviced through hundreds of web
search services, including Google Directory.

Full-Text Search
The last, and the most promising, approach provides full-text

search capability, based on an extension of web search techniques
originally developed for the live Web, which in turn are closely
related to the older discipline of information retrieval. Examples
can be found at the open source web archiving project, WERA [7]
(Figure 3), which attempts to provide full-text searching based on
the NutchWAX/Lucene index [5], with a plug-in of an on-line
page importance computation (OPIC [8]).

Figure 3. WERA

However, a direct application of the live Web search
techniques to a web archive has significant limitations.
Conventional indexing schemes do not consider the temporal
dimension, resulting in highly inefficient handling of temporal
queries. Moreover, current information retrieval strategies do not
take into account temporal contexts when scoring documents.
Consequently, searching constrained within a time span may fail to
deliver web objects more relevant during the specified time span,
not over the entire history covered by the archive.

In order to address the performance problem of temporal
searches, several noteworthy strategies were developed. For
instance, Anick and Flynn [9], Nørvåg [14, 15], and Nørvåg and
Nybø [16, 17] developed a number of proposals for a temporal
document access system. Although their schemes showed
performance improvement for temporal searches both in time and
space, neither considered the document relevancy scoring. On the
other hand, Berberich and et. al. [10, 11] recently presented a
scheme, called Time Machine, which does consider the relevancy
scoring in addition to efficiently supporting temporal searches.
However, its scoring method, which is based on a variant of Okapi
BM25 [18], does not take the search time span into consideration,
failing to score within the temporal context.

Hybrid Strategies
Some web archives combine keyword search and directory

access to provide more useful user interfaces. For example, The
National Library of Australia’s Pandora project [6] (Figure 4)
allows users to browse through the categories, while, at the same
time, it provides a full-text search capability whose results can be
further filtered by archival year, domain or category.

Unfortunately, none of the existing projects and proposals
seems to provide a solid foundation to support temporal searches
in multi-temporal data repository such as a web archive. In
particular, they do not address the issue of time-dependent scoring
and the simultaneous handling of temporal searches efficiently, nor
do they discuss summarization and presentation techniques in

support of information discovery and exploration. Since these
issues are coupled, we address them simultaneously in our work.

Figure 4. Pandora - Australia's Web Archive

Our Approach
In this section, we introduce our initial design of the user

interface, and discuss a number of ways for the user to search and
discover information from a web archive. This will be followed by
a slightly more technical description of the temporal ranking
strategies and the supporting storage indexing structure to create
the necessary infrastructure that is scalable and cost effective.

User Interface
Web search engines have been extremely successful in

enabling users to easily formulate their search goals through an
arbitrary list of words, and to quickly receive ranked lists of links
to relevant web pages. The search engine looks up information
based on the most recent web crawls, whose returned results
essentially consist of lists in ranked order where each list
corresponds to the pages containing a specific word. The
information captures the most recent view of a good snapshot of
the Web with no historical perspective. There are several well-
known page ranking algorithms such as Google’s PageRank [12]
and HITS [13], most of which make use of the linking structures of
the web pages to determine their relevance to the user’s list of
words.

Our problem is significantly more complicated as we
essentially have time series of most web pages as well as
dynamically changing linking structures. Our goal is to also allow
users to easily formulate their search goals through an arbitrary set
of words but to constrain the search, if the user wishes, to a certain
time span. In particular, a user can only specify a time span, and
our search engine will return all the archived web pages during
that time span. However, we anticipate that a combination of a list
of key words and a time span will become the typical mode of
exploring archived web contents. A sketch of our user interface is
given in Figure 5.

 A conventional method to carry out such time-constrained
search would be to conduct the search in the traditional way
ignoring the time specification supplied by the user, and then filter
out the search results using the user-supplied time span. However,
in an ever-growing web archive, this strategy poses a very serious
performance problem. For example, a search for “September 11”
for a time span before 2001 would involve millions of initial

search results only to be filtered down to a tiny fraction, which is
clearly very inefficient (Figure 6). Later in this paper, we will
discuss our approach to support temporal searching of web
archives much more efficiently.

Figure 5. Search UI

September 11 attacks - Wikipedia, the free encyclopedia
The September 11 attacks (often referred to as nine-eleven, written ...
en.wik ipedia.org/wiki/September_11,_2001_attacks

September 11 Digital Archive
to collect, preserve, and present the history of the September 11, ...
911digitalarchive.org/

... and 4 million other pages pertaining to the 9/11 Attack

Ethiopian calendar - W ikipedia, the free encyclopedia
Thus the first day of the Ethiopian year, 1 Mäskäräm, for years ...
en.wik ipedia.org/wiki/Ethiopian_calendar - 43k

... and only 560 other pages that are irrelevant to the 9/11 Attack

Figure 6. Inefficient Search-Then-Filter method

Another important part of the user interface is how to
effectively present the search results to the user so as to enable
information discovery and to quickly find and retrieve pertinent
archived information. This involves two complex issues – scoring,
and grouping and summarization of the search results.

Although many scoring schemes such as the similarity
scoring based on the vector space model have been in use for a
long time, they become much less effective when the search is
conducted within a temporal context. The main reason is that, in
these schemes, the term weight for each word is computed once
and remains fixed. However, a meaning and/or relative importance
of a word is subject to change over time, and a fixed term weight
throughout the entire history will not work well in general.

We propose a scoring scheme where term weights are
computed as a function of time. With our scheme, two very similar
web objects can have very different scores whenever their
temporal contexts are different (for example, one was captured
several years before the other). We will discuss how we score web
objects within the temporal context later in this paper.

Grouping search results with similar characteristics helps
users to more effectively view the search results. Although many
existing Web search engines already have some capability to group
similar web objects based on their contents (and show only a
single representative for the group), the need for grouping the
results of a web archive search becomes more important. For
instance, unlike the live Web, a URL is not unique anymore –
many web objects will have the same URL, but are captured and
archived at different dates. Some of these tend to contain similar
contents, and thus are likely to have similar relevancy scores.
Therefore, for given search keywords, it is highly likely to have
the first result page “polluted” by tens of different versions of the
same URL (Figure 7). Therefore, in many cases, it would be
preferable to group the web objects with the same URL together as
shown in Figure 8. Similarly, for a search with a long time span,
grouping together closely dated web objects may be preferable, as
illustrated in Figure 9.

In summary, our user interface allows a user to supply an
arbitrary list of search words and a time span, and to receive
ranked (within the time span specified) lists of archived web pages,
grouped in a number of ways, including grouping by URLs or date
ranges.

In the following two sections, we examine the underlying
technologies that make this possible in a scalable and cost
effective way.

Enabling Temporal Search of Archived Web
Objects

As more web pages are crawled, we incrementally organize
the web archive’s holdings into multiple sub-collections according
to capture times of web objects. We define a sub-collection as
follows:

SCk = { All web objects valid within a time interval [tk~tk+1) },

where [tk~tk+1) is a time interval (say a day) when no web object
within the interval is an updated version of another object within
the same interval. That is, we are assuming that no significant
changes have occurred to any of the objects within this time
interval.

Note that the sub-collections will in general have objects in

common such as fairly static web pages. Hence, a single web
object version can participate in multiple sub-collections. In some
archives, this division can be straightforward if the same or similar
set of (possibly pre-defined) web objects were archived in separate
crawling sessions on a daily, weekly, or monthly basis. If this is
the case, a sub-collection can consist of only those web objects
crawled in the same single session, where only the most recent
version is selected for multi-versioned web objects.

However, in case of continuous crawls over random web
objects, determining sub-collections is a more involved task. A
possible way to handle the problem is to start a new sub-collection
whenever an updated version (which is significantly different) of
any existing member object in the most recent round is observed.
All other existing member objects are carried over to the new sub-
collection. In order to prevent the creation of too many fine-grain
sub-collections, a minimum time duration can be enforced within
which updates are ignored, but only the most recent version is
selected. We also require that a certain fraction of the objects have

changed, before starting the next time round to create the
following sub-collection.

Figure 7. The Same URL Polluting the First Page

Figure 8. Grouping by URL

Figure 9. Grouping by Date Range

Once a set of sub-collections are available, each of which
containing only single-versioned web objects, a simple scheme can
be used to maintain a conventional inverted index for each sub-
collection. With this scheme, a single sub-collection pointer array
(SCPA) is maintained where each entry points to the
corresponding index. A temporal search begins by locating the
corresponding indices from SCPA (the specified time span can be
lengthy, covering multiple sub-collections). From each index, top
relevant resulting matches are returned and presented to the user.
Assuming that the relevancy scores from different indices are

comparable to each other (we will discuss how to make this
possible in the next section), global ranking of each match can also
be determined. Not only is this scheme simple, it is also practical
and efficient – It allows incremental indexing (all existing indices
are left unmodified for the future data), and parallel processing
(indices can be physically separated among different machines).
Also note that each index maintains a separate data structure (such
as a B-Tree) to efficiently locate a posting list for a given search
word.

An alternative scheme is to have a single index, but multiple
SCPAs for each word. That is, a single global data structure is
maintained to locate a SCPA for a given search word. The SCPA
then contains pointers to posting lists, each of which corresponds
to a sub-collection. This scheme provides a possibility to apply a
temporal compression scheme by coalescing two consecutive
entries in SCPA. This scheme also generally requires less space
than the previous one because the following condition usually
holds.

Naba
bNK

)(−+
≥ ,

where K is the number of sub-collections, N the number of indexed
words, a the size of an entry in SCPA, and b the size of an entry in
B-Tree. Usually, K > 2 and b > 2a.

Figure 10 illustrates the two schemes with space taken by
internal data structures in each scheme.

SC1 SC2 SCK

B-
Tree

PLSC1-w1

PLSC1-w2
w

1

w
2

PLSC2-w1

PLSC2-w2
w

1

w
2

Sub-Collection Pointer Array

PLSC1-wN
w

N

aK
bKN

B-Tree

bN
aKNSC

1

SC
2

SC
K

SC
1

SC
2

SC
K

w
1

w
2

w
N

SC
1

SC
2

SC
K

PLSC1-w1

PLSC1-w2

PLSC2-w1

PLSCK-w1

One SCPA, Multiple Indices One Index, Multiple SCPAs

SCPA

Figure 10. Temporal Indexing Options

Yet another method is to combine the temporal array with the
hierarchical indexing structure into a multi-version hierarchical
structure as was done in [19]. This will provide a more compact
and scalable scheme at the expense of more complicated schemes
for searching. However, we believe that this offers the strategy
with the best performance overall.

Temporal Scoring
Scoring a web object within its temporal context requires that

we specify boundaries of the temporal context. Since we already
defined sub-collections, we simply consider the web object’s time
span of its sub-collection as the temporal context of the web object.

In the following, we use the term document instead of web
object because the base techniques were originally developed to
handle documents. For the web archive environment, the term
document should be interpreted as web object.

The foundation of our scoring scheme is the widely-used
cosine similarity measurement in the vector space model. In this
similarity measurement, the score functions depend on two
parameters, the term frequency tf(t,d), representing how often term
t appears in document d, and the inverse document frequency
idf(t), representing how rarely term t appears in the entire
collection. The score of document d against term t is higher if term
t is rarer in the collection, and it appears more frequently in
document d. That is, it is computed by:

),()(),(dttftidftdscore ×=

There are many variations to define a specific formula for
computing tf(t,d) and idf(t). For example, tf(t,d) in Okapi BM25
[18] takes the following form:

)||1(

)1(
),(

1,

1,

avgdl
dbbkf

kf
dttf

td

td

⋅+−+

+⋅
= ,

where fd,t is the frequency of term t in document d, | d | the length
of document d, avgdl the average document length in the
collection, and k and b are free parameters usually chosen as k1 =
2.0 and b = 0.75.

Also in Okapi BM25, idf(t) is defined as:

5.0
5.0log)(

+
+−=

t

t

f
fNtidf ,

where N is the total number of documents in the collection, and ft
the number of documents containing term t.

We note that among the parameters used in tf(t,d) and idf(t),
the only collection-dependent parameters are avgdl in tf(t,d) and N
and ft in idf(t). Among these three parameters, avgdl can be
thought as a constant to all documents within the same sub-
collection, thus the only parameters that can affect ranking within
a sub-collection are N and ft in idf(t). This allows us to use tf(t,d)
without modification, but requires that we change idf(t) from being
collection-dependent to being sub-collection-dependent. For this,
we replace idf(t) with the following idf(t,k) that depends on sub-
collection SCk as follows.

5.0
5.0

log),(
,

,

+
+−

=
tsc

tscsc

k

kk

f
fN

ktidf ,

where NSCk is the total number of documents in sub-collection SCk,
and fSCk,t the number of documents containing term t in SCk.

Another important issue involving scoring across multiple
sub-collections is to make scores from different sub-collections
comparable to one another. The score compatibility is necessary to
rank search results from different sub-collections together, for
example, when grouping by URL as previously shown in Figure 8.

Our solution consists of defining sub-collection dependent
parameters in a probabilistic sense, if they are not already defined
that way. Okapi BM25 offers a good example of defining idf(t) in
a probabilistic sense; Its idf(t) is roughly inversely-proportional to
the probability that a randomly picked document contains term t,
i.e., ft / N. Thus our definition of idf(t, k) based on Okapi BM25’s
idf(t) will also allow scores to be compatible across sub-collections.
However, for other idf(f) definitions, we may have to replace ft
with ft / N.

We have so far discussed how individual web objects can be
scored. However, combining web objects into groups gives rise to
a yet another ordering problem. That is, we need to be able to rank
groups to determine which group to show on the top of the search
results. For this, we need a group-wide score for each group. One
of the simplest solutions is to use either the highest or the average
score of web objects in a group. However, perhaps a more
effective approach will be to compute a relevancy score as a group.
We compute this group score by replacing the term frequency in a
web object with the document frequency in the group, and the
inverse document frequency in the collection with the inverse
group frequency in the collection. For example, tf(t) and idf(t) in
Okapi BM25 can be modified to score group g against term t as
follows:.

)||1(

)1(
)(),(

1,

1,

avggl
gbbkf

kf
tigftgscore

tg

tg

⋅+−+

+⋅
= ,

where fd,t is the number of documents containing term t in group g,
| g | the number of documents in group g, and avggl the average
number of documents in group g.

The parameter igf(t) can be defined as follows:

5.0
5.0log)(

+
+−=

t

t

gf
gfNGtigf ,

where NG is the total number of groups in the collection, and gft
the number of groups containing term t.

Conclusion
In this paper, we presented new search and access strategies

for web archives and we discussed how to efficiently provide
temporal full-text search, where the users provide search words
and a time span. We also discussed effective ways to deliver the
search results taking into consideration the unique characteristics
of web archives. In order to support such delivery schemes
efficiently, we described underlying technologies that are scalable
and cost effective. We are currently in the process of testing and
validating our methods on a web archive holding over 5TB of data.

References
[1] dmoz - Open Directory Project. URL: http://www.dmoz.org/.

Accessed:March 13 2009.
[2] European Archive. URL: http://www.europarchive.org/.

Accessed:March 13 2009.
[3] The Internet Archive: The Wayback Machine. URL:

http://www.archive.org. Accessed:March 13 2009.
[4] Minerva: Library of Congress Web Archives. URL:

http://lcweb2.loc.gov/diglib/lcwa/html/lcwa-home.html.
Accessed:March 13 20089.

[5] NutchWAX. URL: http://archive-
access.sourceforge.net/projects/nutchwax/. Accessed:March 13 2009.

[6] Pandora - Austrailia's Web Archive. URL:
http://pandora.nla.gov.au/. Accessed:March 13 2009.

[7] WERA. URL: http://archive-access.sourceforge.net/projects/wera/.
Accessed:March 13 2009.

[8] Abiteboul, S., M. Preda, and G. Cobena. Adaptive On-Line Page
Importance Computation. in Proceedings of the 12th international
conference on World Wide Web. 2003. Budapest, Hungary.

[9] Anick, P.G. and R.A. Flynn, Versioning a full-text information
retrieval system, in Proceedings of the 15th annual international

ACM SIGIR conference on Research and development in information
retrieval. 1992, ACM: Copenhagen, Denmark.

[10] Berberich, K., et al., FluxCapacitor: efficient time-travel text search,
in Proceedings of the 33rd international conference on Very large
data bases. 2007, VLDB Endowment: Vienna, Austria.

[11] Berberich, K., et al., A time machine for text search, in Proceedings of
the 30th annual international ACM SIGIR conference on Research
and development in information retrieval. 2007, ACM: Amsterdam,
The Netherlands.

[12] Brin, S. and L. Page. The anatomy of a large-scale hypertextual Web
search engine. in Proceedings of Proceedings of the Seventh
International Conference on World Wide Web 7. 1998. Brisbane,
Australia: Elsevier Science Publishers B. V.

[13] Kleinberg, J.M., Authoritative Sources in a Hyperlinked Environment.
Journal of the ACM, 1999. 46(5): p. 604-632.

[14] Nørvåg, K. Space-Efficient Support for Temporal Text Indexing in a
Document Archive Context. in Proceedings of the 7th European
Conference on Digital Libraries (ECDL'2003). 2003. Trondheim,
Norway: Springer Verlag.

[15] Nørvåg, K. V2: a database approach to temporal document
management. in Proceedings of the 7th Database Engineering and
Applications Symposium (IDEAS 2003). 2003. Hong Kong, China:
IEEE Computer Society.

[16] Nørvåg, K. and A.O. Nybø. DyST: Dynamic and Scalable Temporal
Text Indexing. in Proceedings of Temporal Representation and
Reasoning, 2006. TIME 2006. Thirteenth International Symposium
on. 2006.

[17] Nørvåg, K. and A.O. Nybø. Improving space-efficiency in temporal
text-indexing. in Proceedings of the10th International Conference on
Database Systems for Advanced Applications(DASFAA 2005). 2005.
Beijing, China: Springer Verlag

[18] Robertson, S.E., et al. Okapi at TREC-3. in Proceedings of The 3rd
Text REtrieval Conference (TREC). 1994. Gaithersburg, MD.

[19] Song, S. and J. JaJa, Archiving Temporal Web Information:
Organization of Web Contents for Fast Access and Compact Storage
(UMIACS Technical Report No. UMIACS-TR-2008-08). 2008,
University of Maryland Institute for Advanced Computer Studies.

Author Biography
Sangchul Song is a Ph.D. candidate in Electrical and Computer

Engineering at the University of Maryland, College Park. Before joining
Maryland, he worked as a security software engineer for several years in
San Jose, CA. He received BE and MS degree at Korea University, Seoul,
Korea. At Maryland, he has been actively involved in the long term digital
preservation group led by Prof. Joseph JaJa.

Joseph JaJa currently holds the position of Professor of Electrical
and Computer Engineering with a joint appointment at the Institute for
Advanced Computer Studies at the University of Maryland, College Park.
Dr. JaJa received his Ph.D. degree in Applied Mathematics from Harvard
University and has since published extensively in a number of areas
including parallel and distributed computing, combinatorial optimization,
algebraic complexity, VLSI architectures, and data-intensive computing.
His current research interests are in parallel algorithms, digital
preservation, and scientific visualization of large scale data. Dr. JaJa has
received numerous awards including the IEEE Fellow Award in 1996, the
1997 R&D Award for the development software for tuning parallel
programs, and the ACM Fellow Award in 2000. He served on several
editorial boards, and is currently serving as a subject area editor for the
Journal of Parallel and Distributed Computing and as an editor for the
International Journal of Foundations of Computer Science.

