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Abstract

Metagenomic assembly, the simultaneous assembly of a collection
of organisms in an environment, has had many recent successes (gut
data (macaque, human, japan human, etc)) and is the focus of many
ongoing studies (HMP). Current assembly techniques have been tuned
for single-organism assembly and are confounded by metagenomic data.
As metagenomics becomes more popular and common, assembly soft-
ware must be modified to exploit the characteristics of this novel data.
We propose to explore and apply novel algorithms to maximize the
benefits and utility of metagenomic datasets.

1 Introduction

In a traditional whole-genome shotgun sequencing project, assembly software
reconstructs a genome from multiple short strings - collected by varying
sequencers - called reads. The reads represent overlapping portions of the
genome. Multiple sequencing techniques have been developed to generate
the reads including the classic Sanger sequencing as well as next-generation
platforms that generate short reads such as Solexa and SOLiD currently
generate reads of 35bp [6],[11]. The pyrosequencing platform developed by
454 Life Sciences generates medium length reads of as long as 250 bp [14].
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Many of these technologies can also generate paired-ends reads of varying
lengths which, in addition to the reads, have a constraint on their distance
and orientation.

Most whole-genome assemblers were developed in the age of Sanger se-
quencing for single-organism whole-genome sequencing projects. Recently,
several assemblers have been modified to work with the new shorter read
technologies [7], [22]. Several have recently been modified to handle mixed
sets of reads [8], [15], [12], [19]. Metagenomic data presents challenges similar
to those presented by novel sequencing technologies.

Current assemblers, developed for single-organism assembly, have been
successfully used to assemble metagenomic data sets [20], [21]. However,
these assemblies are not well specified, require manual intervention and un-
documented settings, and are error prone. Therefore, they are not repro-
ducible between different centers and not suitable for high-throughput set-
tings which require many consistent runs. Therefore, we seek to develop new
techniques for metagenomic assembly.

We will make the software available to the bioinformatics community by
integrating with AMOS [2] and the Celera Assembler [3], two widely-used
open-source platforms for genome assembly and analysis.

2 Background

Assembly software generally has several modules for successive phases. The
phases are: overlap detection; ungapped sequence alignments called unitigs;
assembling unitigs into scaffolds, gaped sequence alignments, using paired-
end reads; and consensus determination.

Many of the assembly phases may be viewed as a series of graph reduc-
tions. The first graph is a read-ends graph, where each read consists of two
nodes in the graph, representing the read ends. Each pair of read ends from
a single read is connected by an undirected edge while directed edges con-
nect overlapping read ends. A valid unitig is a path through the graph that
crosses an undirected edge after every directed edge. A divergent path in
the graph represents a contradiction in the data and stops the unitig under
construction.

After the unitigs are constructed, they may be viewed as the nodes in a
new graph. Using the set of paired reads in a unitig, we can bundle consistent
pairs together into a weighted edge. Since each of the read pairs provides a

2



distance and an orientation, each edge between two unitigs has an orientation
and a mean distance. The resulting graph is bi-directed [10]. That is, there
are four possible edges between any two nodes:

• Both arrows pointing inwards, away from the nodes. This is generally
known as an innie edge.

• Both arrows pointing outward, towards the nodes. This is generally
known as an outie edge.

• Left arrow pointing inward, right arrow pointing outward. This is gen-
erally known as a normal edge.

• Right arrow pointing inward, left arrow pointing outward. This is gen-
erally known as an anti-normal edge.

Scaffolding starts by assigning an arbitrary orientation to a node and
placing it at position 0. It them proceeds to orient nodes consistently with the
orientations and positions implied by the edges. As a result of this operation
the bidirected graph is transformed into a directed one. A scaffolding module
must minimize the number of back edges, or contradictory edges, that are
unsatisfied after it is finished. Each connected component in a graph becomes
a scaffold. A final step is to project the graph form of a scaffold only a
linear sequence. Several unitigs may occupy the same position and must
be reconciled. This reconciliation sometimes leads to scaffolds being broken
where unitigs cannot be linearized.

A complication in any assembly are genomic repeats. Repeats cause prob-
lem both in the overlap graph and in the scaffold graph. In overlap graphs,
they can connect chimeric sections of the genome and lead to divergent paths.
In scaffold graphs a repeat unitig introduces many false edges and connects
disparate sections of the genome, such as different chromosomes, leading to
graph tangles or cycles. The repeats prevent simplification of the scaffold
graph. Therefore, assemblers try to identify the repetitive areas for special
handling. For example, the Celera Assembler [16] uses coverage, based on the
average number of bases between read start positions, to identify repeats. An
increase in coverage is presumed to be an indicator of a repeat. These may
also be identified using local graph features such as converging and diverging
paths.

In metagenomic assembly, high coverage and local graph features do not
necessarily correspond to repeats. Over-represented organisms may appear
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Figure 1: In each sample, the highlighted area represents the motif. Note that
only 1-deep graphs are currently searched. In the first example, only 3-length
motifs are found, the motif 2-3-4-5 would ge counted as 2-3-4 and 5-4-3. However
the width of the subgraph is arbitrary. In the fourth exaple, the subgraph would
be found if the middle section (nodes 3,4,5,6) contained only nodes 3,4 or if it
contained more than four nodes.

repetitive due to their higher abundance relative to other organisms. Diver-
gent paths, which are expected to be high in a metagenomic assembly due
to intra-species polymorphism, are also not indicative of repeats. Therefore,
linearizing scaffolds may break correct assemblies of an organism when two
polymorphic unitig cannot be reconciled.

We propose to identify graph motifs that are common in metagenomic
assembly and apply them as reductions to the graph before assembling. As
an example, suppose a two organisms share common sequence, separated by
a diverged region (see figure 1). This pattern appears as a bulge in the graph.
A typical assembler will generate four separate scaffolds. If this pattern is
recognized, the assembler can generate a single scaffold, detailing the poly-
morphism. We believe that recursively reducing the graph by identifying
and collapsing these motifs will simplify the graph and identify conserved or
divergent regions of interest.

We previously explored graph reduction to improve assembly. Given the
overlaps for a set of reads R, we construct a multi-graph G with both directed
and undirected edges. Each read r is represented by a pair of nodes r5′ and
r3′ , representing the two ends of a read, connected by an undirected edge.
Directed edges represent dovetail overlaps, that is, those that span one end of
each read. A dovetail path is an acyclic path in G that includes an undirected
edge before and after every directed edge. In general, unitigging proceeds by
following dovetail paths until there is a split, at which point a new unitig is
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started. We aggressively simplified the graph by removing all directed edges
except those that represent the mutually-best edge between any pair of read
ends. A mutually-best edge is one that spans the most bases. We then record
for each read r the number of nodes reachable from it, the score for a read
is the sum of its nodes (r5′ and r3′). Unitigs are constructed by starting
with the highest scoring read to build the longest unitigs first. Whenever a
path ends, we proceed to the next highest-scoring read that is not already in
a unitig. Finally, heuristics are applied to split unitigs that were incorrect.
The resulting assemblies are better than other available assemblers[15].

We have also explored graph reductions in the consensus step. A multi-
alignment can be represented as a graphG. Vertices represent non-overlapping
sequence segments, edges connect vertices and represent ungapped align-
ments between reads while gaps are implicit. For a set S of n reads, G is
n-partite. Every position in a read r is represented in exactly one vertex.
Since some edges may be contradictory, only a subset of the edges E can be
satisfied in a given alignment. A proper subset E ′ ⊂ E, called a trace, can
be found efficiently using heuristics. The consensus tool built on this concept
generates superior multi-alignments, especially in the case of high-error and
short reads[18].

The alignment graph approach allowed the consensus tool to create better
layouts, especially in the presence of high-error reads[18].

Assembly graphs are large and complex. Optimally finding all motifs is
NP-complete. We will explore and apply approximation algorithms. We will
also attempt to parallelize the algorithms where possible, using randomized
algorithm and graph partitioning approaches. Since repeat unitigs will still
pose a problem for assembly, we will explore novel methods for identifying
repeats using global graph structure.

Metagenomic assembly also requires novel visualization techniques. Biol-
ogists need to view how unitigs are connected to see the paths representing
organisms as well as areas of polymorphism between them. Current visualiza-
tion is static [17] and the complex graph structure as well as poor node layout
makes it difficult to view. We believe that by simplifying the graphs, they
will be easy enough for human interpretation. We will explore how to lay out
the graphs in a logical order while minimizing the number of back-edges, or
cycles, and path crossings. This could be done using the minimum feedback
vertex set algorithm, which is again NP-complete. We will evaluate graph
visualization techniques, such as those presented in [13], and explore novel
algorithms. We will finally allow custom visualization by enabling zoom and
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allowing the user to dynamically expanded sections of the graph that have
previously been collapsed.

3 Methods

Scaffolding consists of three operations: orientation, positioning, and simpli-
fication.

We must first convert the bi-directed graph into a directed graph, ori-
enting the unitigs. While converting, we would like to minimize the number
of back-edges, or cycles, created in the graph. That is, we would like a
uni-directional ordering of the nodes of the graph. This problem may be
formulated as a the minimum feedback arc set. which is NP-complete[9].

In addition to assigning an edge direction, we want to assign a position.
There may be multiple edges assigning contradictory positions to a unitig.
We want to maximize the number of satisfied edges by placing unitigs as close
to the specified position as possible. This can be formulated as a least squares
minimization of

∑
abs(v.distance− ((u.distance+ e.distance)∀e(u, v) ∈ E).

That is, we desire to minimize the sum of the distances between the assigned
unitig position and the positions specified by the edges incident on that
unitig.

The prototype implementation uses greedy approaches. The orientation
and distances are computed using the first edge incident on a vertex. Contra-
dictory edges are ignored. The greedy algorithm is based on a breadth-first
search traversal and has a complexity of O(|E| + |V |). The details are in
algorithm 1.

Once we have oriented the unitigs and positioned them, we search for
common motifs to simplify the graph. To make the problem simpler, only
one-level deep motifs are analyzed (see figure 1. The prototype is based
on algorithm 2. Each iteration of algorithm 2 has a worst-case runtime of
O(|V | × (∆(G)2 + 3∆(G))) where ∆(G) is the maximum degree of G. This
has a worst-case runtime of O(|V | × (|E|2 + 3|E|)). However, in a unitig
graph it is likely that ∆(G) << |E|. Every level of depth multiplies the
runtime by a factor of ∆(G). Therefore, it is necessary to explore efficient
approximation and parallel algorithms to run on larger motifs or motifs that
are more than one-level deep.
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Algorithm 1 Order and Orient Unitigs Given a Bi-Directed Multi-Graph

Given a bi-directed, multi-graph G(V,E)
Each vertex v) ∈ V has a position and orientation.
Each edge e(u, v) ∈ E has an orientation and a distance.
Queue q initialized to empty.
for all v ∈ V do
v.position ← uninitialized, v.orientation ← uninitialized

end for
while ∃v ∈ V such that v is uninitialized do
q.clear()
q.push(v)
v.position← 0, v.orientation← FORWARD
while q.isEmpty() == FALSE do
v = q.pop()
for all u ∈ V such that ∃e(u, v) ∈ E do
q.push(u)
position← v.position+ e.distance
orientation← getOrientation(v.orientation, e.orientation)
if u.position == uninitialized then
u.position← position
u.orientation← orientation

else
position← position+u.position

2

dist← position− u.position
if dist ≤ LIMIT AND u.orientation == orientation then
u.position← position

end if
end if

end for
end while

end while
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Algorithm 2 Identify and Simplify Motifs in Unitig Graph

Given a directed, multi-graph G(V,E)
Each vertex v) ∈ V has a position and orientation.
Each edge e(u, v) ∈ E has an orientation and a distance.
Set M initialized to empty.
while a motif is found do

for all v ∈ V do
for all u ∈ V such that ∃e(v, u) ∈ E do
sink ← UNINITIALIZED
numNeighbors← 0
for all w ∈ V such that ∃e(u,w) ∈ E do

if sink 6= w AND sink 6=v then
sink ← w
numNeighbors = numNeighbors+ 1

end if
end for
if numNeighbors == 1 then
M.add(v), M.add(u), M.add(sink)

end if
end for
for all u ∈ V such that ∃e(v, u) ∈ E do

if u /∈M then
M.clear()

end if
end for
for all u ∈ V such that ∃e(u, sink) ∈ E do

if u /∈M then
M.clear()

end if
end for
for all m ∈M — m 6= v AND m 6= sink do

for all u ∈ V such that ∃e(m,u) ∈ E or ∃e(u,m) ∈ E do
if u /∈M then
M.clear()

end if
end for

end for
end for

end while
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4 Implementation

The prototype software implementation, named Bambus 2, is available as
part of the AMOS package [2]. The AMOS package consists mostly of C++
programs with some shell and perl script utilities. The Bundler 2 pipeline is
written in C++.

AMOS also includes a binary file format, known as a bank, that contains
all the information about an assembly. This includes read sequences, contig
layout and multi-alignment, and mate pair information. The bank allows
random-access read/write operations. Each element of a bank is represented
with AMOS as a C++ class. AMOS also includes a large set of utilities
for converting Celera Assembler [3] output, among others, to AMOS bank
format. We also include the SeqAn library for graph processing to simply
graph storage and graph algorithms [5].

By integrating with AMOS, Bambus 2 can exploit the power of an exist-
ing random-access binary database while maintaining interoperability with
other open-source tools. The Bambus 2 implementation consists of three
executables working in a pipeline:

• CLK - This executable processes an AMOS bank, identifies all the mate
pair information present, and creates contig link messages.

• Bundler - This executable processes the contig link messages generated
by clk and bundles consistent ones together into contig edge messages.

• OrientContigs - This executable processes the contig edge messages
output by Bundler and assigns and order and orientation to each of
the contigs in the AMOS bank. It outputs both an AGP-formatted file
[1] and a Graphvis-formatted graph [4].

Below we describe the implementation details of each step in the Bambus
2 pipeline.

4.1 Contig Link Builder - CLK

The purpose of the CLK module is to converts mate pairs connecting reads
to mate pairs connecting contigs. The module starts by building a mapping
of reads to contigs and reads to libraries. It then reads all the mate pairs
present in a bank. For any mate pair that connects two contigs, the module
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adjusts the size based on the position of the mated reads in the contigs.
It also adjusts the orientation based on the orientation of the reads within
the contig. The standard deviation remains unchanged. Finally, the module
outputs all the contig link messages that were generated into a bank.

4.2 Contig Link Bundler - Bundler

The Bundler module serves to bundle together consistent links between con-
tigs in contig edges. A contig edges differs from contig links since it combines
several consistent contig links into one weighted edge. Currently, the weight
is equal to the number of consistent contig links connecting the contigs. This
can be expanded to include other sources of connection information such as
overlaps or to give higher confidence to some edges versus others. Multi-
ple consistent edges can exist between a pair of contigs. The Bundler will
output different orientation edges between contigs but it will not output
inconsistent-length edges.

4.3 Contig Edge Processor - OrientContigs

OrientContigs is the scaffolding module of Bambus 2. It reads in the contigs
and contig edges and assigns each contig a position and an orientation (either
forward or reverse). Connected components in the contig graph become
scaffolds where the first contig in the output is adjusted to start at position
0. The scaffolds are not linearized.

The module includes options to ignore contig edges below a specified
weight, to ignore contigs marked as repetitive, and to perform graph simpli-
fication. If graph simplification is enabled, the module recursively searches
for known metagenomic motifs and collapses them into a single contig. We
will update the implementation to instead split the motif out into a separate
scaffold that is referenced by the original. Finally, when no more motifs are
found OrientContigs outputs the results in both AGP and Graphviz formats.

4.4 Repeat Detection

We have also implemented several novel repeat detection method as a pro-
totype.:

• Component-Joining Repeats - The first method is designed for a general
scenario. It is based on the observation that repeat connect compose
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separate sections of a genome. Therefore, the node they represent will
be connected to many nodes in the graph. In order to detect them, we
calculated all-pairs-shortest paths and for each node, v, we calculate the
number of times it appears on a shortest path: Pv. A node is declared
repeat if Pv < x̄− c× σ or Pv > x̄+ c× σ where c is a constant.

• Connected-Component Repeats - The second method is designed for
a metagenomic setting. Traditional assemblers use statistics calcu-
lated on the entire data set to identify repetitive contigs. We find
the strongly-connected components of the graph. For each strongly
connected component S, for each node v ∈ S, we compute the astat
value as in [16]. An abundant organism that is less likely to appear
repetitive in our approach as the connected component will not include
nodes from other organisms in the astat calculation.

4.5 Performance

In order to evaluate scalability, we ran several benchmarks through the Bab-
mus 2 pipeline. We recorded run times for on a 2GHz machine with 2GB of
memory running Cygwin. The results are presented in table 1. Note that
the pipeline does not depend on the number of input reads. The clk scales
with the number of mates input. The Bundler and OrientContigs modules
scale with the number of contigs and their edges. In the worst case, this
can be equal to the number of mates if each mate-end is a contig. However,
this is very unlikely in any real assembly. Therefore, the algorithms used
in Bambus 2 have lower performance requirements than those used in other
assembly steps, such as overlapping, which scales with the number of reads.

We also evaluated the performance impact of our repeat detection. The
results are in table 2. Note that only the times for OrientContigs is presented
as it is the only component that includes repeat-detection code. Notice the
’-’ in the lower-right corner. The algorithm did not complete on the machine
due to memory limitations. The implementation of all pairs shortest paths
has efficiency O(|V |2 log |V | + |V ||E|) based on Johnson’s algorithm[9] but
runs out of memory in the SeqAn implementation. This highlights the need
for exploring parallel computation techniques to allow algorithms to run on
commodity grids.

We expect new sequencing platforms will exponentially increase the num-
ber of mate pairs available for assembly. To take advantage these new tech-
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Organism Number of Mates Number of Contigs Module Runtime
B. suis (1330) 16,850 178 CLK 2s

Bundler 2s
OrientContigs 3s

Acid Mine 85,839 24,869 CLK 45s
Bundler 92s

OrientContigs 100s

Table 1: The runtimes for each of the steps of the Bambus 2 pipeline without
repeat detection. Run times were measured on Cygwin running on a 2GHz x86
machine with 2GB of RAM. Runtimes are presented in seconds unless otherwise
indicated.

Organism Number of Mates Number of Contigs Module Runtime
B. suis (1330) OrientContigs 6s

Acid Mine OrientContigs -

Table 2: The runtimes for each of the steps of the Bambus 2 pipeline with repeat
detection. Run times were measured on Cygwin running on a 2GHz x86 machine
with 2GB of RAM. Runtimes are presented in seconds unless otherwise indicated.

nologies, we will improve Bambus 2 performance by using approximation
algorithms and distributed computing where possible.

5 Preliminary Results

NOT DONE. Show results for bacteria with repeats marked. Explain how
repeats were marked appropriately. Mention problems with Acid Mine.

6 Proposed Work

NOT DONE. Describe that we can do least squares, better orientation, better
motif finding.
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