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annotation might arise from the study of changes in 
genome sequences that occur during adaptive evolution.

Here we discuss all four levels of genome annotation, 
with an emphasis on how to generate two-dimensional 
annotations for biochemical-reaction networks. Our 
focus is motivated by an increased interest in generating 
two-dimensional reconstructions, which are useful for 
evaluating one-dimensional annotations, for analysing 
and interpreting experimental results (such as gene-
expression data), and for their promise to systematically 
drive biological discovery. The analysis and evaluation 
of these interaction networks and their accompanying 
models will provide insights into human diseases1,2, 
such as cancer and diabetes, enable formal compara-
tive genomic analyses, identify drug targets for human 
pathogens3,4, and can be used to design industrially or 
environmentally useful organisms5–11.

1D annotations: network components
Advances in high-throughput and computational 
technologies have resulted in the genome sequencing of 
hundreds of organisms across all three domains 
of life12. One-dimensional annotation of sequenced 
genomes involves the identification of genes, followed 
by functional assignment using various computational 
tools. The bioinformatics methods that are used to 
derive the one-dimensional annotations have been 
reviewed elsewhere13. These methods include gene-
finding algorithms such as GLIMMER14, GlimmerM15 
and GENSCAN16 and sequence-homology search 
tools such as BLAST17,18, FASTA19 and HMMER20. 
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One-dimensional annotation
Details the position of genes 
within the genome and 
describes the cellullar function 
of gene products.

Two-dimensional annotation
Accounts for the cellular 
components that are identified 
in a one-dimensional 
annotation as well as their 
chemical and physical 
interactions.

Network reconstruction
A description of the network 
components and their 
interactions.
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Abstract | Our information about the gene content of organisms continues to grow as 
more genomes are sequenced and gene products are characterized. Sequence-based 
annotation efforts have led to a list of cellular components, which can be thought of as a 
one-dimensional annotation. With growing information about component interactions, 
facilitated by the advancement of various high-throughput technologies, systemic, or two-
dimensional, annotations can be generated. Knowledge about the physical arrangement 
of chromosomes will lead to a three-dimensional spatial annotation of the genome and a 
fourth dimension of annotation will arise from the study of changes in genome sequences 
that occur during adaptive evolution. Here we discuss all four levels of genome annotation, 
with specific emphasis on two-dimensional annotation methods.

The growing number of fully sequenced genomes and 
high-throughput data sets has led to the identification 
and condition-dependent use of cellular components 
on a genome scale. Information about the function of 
cellular components, their interactions, spatial location 
and alterations over evolutionary time can be represented 
in the different levels of genome annotation (FIG. 1). 
One-dimensional genome annotation involves the identifi-
cation of genes in the genome and the assignment of 
either predicted or known functionality to the identified 
gene products. This one-dimensional annotation is com-
monly referred to as genome annotation; however, other 
levels of detail can be annotated as well.

Two-dimensional genome annotation specifies the 
cellular components and their interactions (for example, 
protein–protein interactions, regulatory interactions and 
metabolite transformations). The delineation of chemical 
and physical interactions between cellular components 
leads to a network reconstruction that effectively repre-
sents two-dimensional information. If such networks 
are used to provide a structured basis for studying the 
genotype–phenotype relationship, they need to be 
biochemically, genomically and genetically accurate.

As we learn more about the spatial orientation of 
network components and evolution of genomes, new 
levels of annotation will be used to describe the genomes 
(FIG. 1). Knowledge about the intracellular arrangement 
of chromosomes and other cellular components will lead 
to a three-dimensional annotation of the genome, as cellu-
lar packing and localization of the genome can have an 
important role in its function. Four-dimensional genome 
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One-dimensional
annotation: 
component enumeration

Two-dimensional
annotation: 
network reconstruction

Three-dimensional
annotation:
ultrastructural reconstruction

Four-dimensional annotation:
genome plasticity and
new network states

Three-dimensional 
annotation
Details the spatial location of 
genes (rather than the gene 
products) within the cell as a 
result of genome packaging.

Four-dimensional 
annotation
Details changes in genome 
sequence that result from 
adaptive evolution.

Additionally, non-homology-based algorithms such as 
gene neighbour21, gene cluster22,23, Rosetta stone24–26 and 
phylogenetic profiles27,28 are used to assign functional-
ity on the basis of patterns across multiple genomes. 
More recently experimental data, including gene- 
expression29–33 and protein-interaction maps34, have 
identified functionally related proteins. Even with all 
of these methods a large fraction of the genes in the 
genome have an unknown function.

2D annotations: component interactions
Two-dimensional genome annotation builds on one-
dimensional annotation by accounting for cellular 
components and their interactions. Components can 
physically and/or chemically interact with one or more 
other components. These interactions often lead to 
an altered state of the component, such as a phospho-
rylated or bound state of a protein or a biochemical 
transformation. The components can be arranged as 
rows in a table and each identified interaction among 
the components can be represented by numerical entries 
in a column (FIG. 1). Therefore, component-interaction 
maps can be represented by a table that contains two-
dimensional information. Two-dimensional annota-
tion allows the information in a one-dimensional 
annotation to be placed into a biological context, and 
in some cases can lead to a one-dimensional genome 
re-annotation35–39.

An example of a two-dimensional annotation is a 
metabolic-network reconstruction, which is basically 
a genetically, genomically and biochemically structured 
database that can be queried using various computa-
tional methods (reviewed in REF. 40). Below we describe 
how to generate, represent and validate genome-scale 
reconstructions of biochemical-reaction networks, 
thereby creating a two-dimensional annotation for a 
genome. The fundamental goal of a reconstruction is to 
accurately define the chemical transformations that take 
place among chemical components in a network.

Although the emphasis here is on metabolic networks 
as the literature on them is well developed, other biological 
networks can also be represented in much the same way 
as they fundamentally obey many of the same chemical 
rules41. Protein-interaction, signalling and regulatory 
networks are often represented qualitatively. Although the 
available reconstructions of these networks describe the 
components and their interactions, they currently lack the 
biochemical details of metabolic reconstructions. Therefore, 
many of the reconstruction details that are presented in 
this review are transferable to these networks if the details 
(BOX 1), such as stoichiometry, are known. A stoichiometric 
reconstruction of the JAK–STAT signalling network was 
recently published42. It includes data on the stoichiometry 
of network components (ligands, proteins and ATP) that 
participate in individual signalling events (ligand binding, 
protein dimerization and phosphorylation).

Figure 1 | Four levels of annotation. One-dimensional genome annotation provides a list of network components. 
The interaction between network components can be represented using a two-dimensional annotation (where a 
matrix of stoichiometric coefficients is used to represent component interactions). The structural organization of the 
genome can also be represented spatially in a three-dimensional annotation. Changes in genome sequence can be 
characterized in a four-dimensional annotation. One- and two-dimensional annotations are reproduced, with 
permission, from Nature Biotechnology REF. 102 © (2004) Macmillan Publishers Ltd. The three-dimensional annotation 
is reproduced, with permission, from REF. 103 © (2002) Blackwell Publishing Ltd.  Data for the four-dimensional 
annotation are from REF. 104.
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Level 3: Stoichiometry

Level 4: Thermodynamic considerations and/or directionality

1 LAC + 1 NAD ? 1 PYR + 1 NADH  + 1 H

LAC

Prokaryotes

Eukaryotes

Primary metabolites Coenzymes

PYR

Charged formulae

NADH

Level 5: Localization

1 LAC [c] + 1 NAD [c] 1 PYR [c] + 1 NADH [c]  + 1 H [c]

1 LAC + 1 NAD   1 PYR + 1 NADH  + 1 H

NAD

C3H6O3 C21H28N7O14P2 C21H29N7O14P2

C3H3O3
–C3H5O3

– C21H26N7O14P2
– C21H27N7O14P2

2–

[c]: cytoplasm [n]: nucleus  [m]: mitochondria
[e]: extracellular  [g]: golgi aparatus [x]: peroxisome
[p]: periplasm [v]: vacuole [h]: chloroplast
  [l]: lysosome [r]: endoplasmic 
     reticulum

Level 2: Metabolite formulae
Neutral formulae

Level 1: Metabolite specificity

How to reconstruct metabolic networks. Although high 
gene- or protein-sequence homology implies a similar 
function for gene products, a one-dimensional annota-
tion that is based purely on sequence homology is an 
hypothesis43 that needs biochemical verification. Several 
details need to be considered for translating a one-
dimensional annotation of a gene into a set of defined 
biochemical reactions (BOX 1). Scientists who want to 
reconstruct biochemical-reaction networks should 
pay attention to the issues that are outlined below and 
summarized in BOX 1.

As a first step in generating enzyme-specific bio-
chemical reactions, the substrate specificity of an enzyme 
has to be determined. In general, enzymes can be classi-
fied into two groups on the basis of substrate specificity: 
those that function only on one or a few highly similar 
substrates and those with a broader substrate specificity 
that can function on a class of compounds with similar 
functional groups (for example, alcohol dehydrogenase). 
The substrates that are recognized by either type of these 
enzymes might differ across organisms. The substrate 
specificity can differ for primary metabolites, as well as 
coenzymes (such as NADH versus NADPH and ATP 
versus GTP). BRENDA44, an online database, contains 
detailed information about enzyme substrate specifici-
ties for a number of organisms and links to relevant 
publications.

Once the molecular formulae have been determined 
for the participating metabolites, the stoichiometry of 
the reaction can be specified. Here the overall charge 
and every element (including C, H, N, O, S and P) of 
the substrates and products have to be balanced. The 

stoichiometry for the metabolites is generally available 
in biochemical databases (TABLE 1), although protons 
and water molecules are often left out of the reactions 
in these databases. The directionality or reversibility 
of a reaction, which is a function of the thermodynam-
ics of the reaction, also needs to be defined. Biochemical 
characterization studies will sometimes test the 
reversibility of enzyme reactions, but the directionality 
can differ between in vitro and in vivo environments 
owing to differences in temperature, pH and metabolite 
concentrations.

Reactions and proteins need to be assigned to specific 
cellular compartments. This task is relatively easy for 
prokaryotes, which have only a small number of cellular 
compartments, but becomes challenging for eukaryotes, 
which have significantly more subcellular compartments 
(BOX 1). Incorrect assignment of the location of a reac-
tion can lead to further gaps in the metabolic network 
and misrepresentation of the network properties. In the 
absence of experimental data, proteins can be assumed 
to reside in the cytosol45.

Algorithms, such as PSORT46 and SubLoc47, predict 
the cellular localization of proteins on the basis of nucle-
otide or amino-acid sequences (see REF. 48 for a review 
of the algorithms). Additionally, high-throughput 
experimental approaches have been developed for 
determining the cellular localization of proteins, such 
as immunofluorescence49 and GFP tagging50 of indi-
vidual proteins. In multicellular organisms, the expres-
sion of individual genes can vary across cell types33; 
in these cases tissue-specific reconstructions might be 
more functionally relevant.

Box 1 | Defining metabolic reactions

Different levels of information are needed to obtain a 
detailed description of a biochemical transformation. 
Biochemical accuracy is especially important if the 
mathematical representation of the reconstruction is to 
be used for subsequent computations, otherwise the 
calculated network properties are likely to be incorrect. 
The first level defines the metabolite specificity of a 
gene product. Although primary metabolites are often 
the same for homologous enzymes across organisms, the 
use of coenzymes might vary. In the case of lactate 
dehydrogenase in Escherichia coli (see figure), NAD 
serves as an electron acceptor for lactate (LAC) 
resulting in the formation of pyruvate (PYR) and NADH. The 
second level of detail accounts for the charged 
molecular formula of each metabolite at a physiological 
pH. The knowledge of the chemical formula leads to 
the third level of detail, the stoichiometric coefficients 
of the reaction. By balancing out the elements and 
charge in the reaction, the overall stoichiometry of 
the reaction can be defined. It is here that protons and water 
molecules are often added to balance the chemical 
equation. The directionality of the reaction represents the 
fourth level, at which biochemical studies and 
thermodynamic properties define the in vivo reaction 
directionality. At the fifth level, the cellular compartment in 
which the reaction takes place has to be determined. See 
supplementary information S1 (box) for more details.
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Databases do not generally contain all the differ-
ent types of information that have been discussed 
above. Consequently, various sources must be used to 
comprehensively capture the relationship between dif-
ferent components (BOX 2). The amount and types of 
available data can vary widely for different organisms, 
which affects the quality of reconstruction efforts. The 
one-dimensional annotation is the primary data source 
for a genome-scale reconstruction as it provides a list 
of enzymes and transporters. With large numbers of 
ORFs still having unassigned functions, it is important 
to remember that the sequence-derived list of metabolic 
enzymes is not complete.

More detailed metabolic information can be found in 
biochemistry textbooks, scientific literature and online 
databases. A measure of the amount of  scientific literature 
that is available for an organism is its species-knowledge-
index (SKI) value12, which is calculated as the number 
of abstracts per species in Medline divided by the number of 
genes in the genome. Reconstructions for organisms with 
the top SKI values have already appeared (TABLE 2), includ-
ing Escherichia coli, Homo sapiens and Staphylococcus 
aureus. A number of online databases contain infor-
mation that is available in the biochemical literature, 
including ExPASy Proteomics Server51, KEGG — Kyoto 
Encyclopedia Genes and Genomes52, and BRENDA44, 
all of which detail enzymatic activities (TABLE 1). For 
many organisms, organism-specific databases are being 
developed that detail the metabolic capabilities and 
collate the available data for a specific organism (EcoCyc53, 
WIT54, SGD55, MetaCyc56 and others).

Some types of information are more reliable than 
others, leading to multiple levels of confidence in 
the biochemical reactions57. Reactions that are based 
on biochemical characterizations of enzymes are more 
reliable than those that are based solely on sequence 
similarity. The least reliable reactions are those 
that were added without any genetic or biochemical 
evidence to fill in the gaps in the metabolic pathways (this 

is discussed in more detail below). Assigning confidence 
levels to the reactions in a reconstruction will aid in the 
network evaluation, which is described in a later section.

Assembly and representation of metabolic-network 
reconstruction. The previous sections described how 
annotations for individual metabolic genes can be trans-
lated into a list of metabolic reactions detailing stoichi-
ometry, directionality and localization. The next step in 
generating a two-dimensional network reconstruction 
involves assembling the metabolic reactions into a net-
work and representing the reconstruction mathemati-
cally (BOX 3), allowing for the quantitative analysis of 
network properties.

Assembling a reconstructed metabolic network 
involves: analysing traditional biochemical pathways 
(such as glycolysis and amino-acid biosynthesis); filling 
in missing metabolic activities that are not represented in 
the one-dimensional annotation; and adding reactions 
that do not fit into defined biochemical pathways but are 
supported by the one-dimensional annotation. By starting 
with central metabolism, the cellular fueling reactions58 
that are present in all organisms, and then moving on to 
the biosynthesis of individual macromolecular building 
blocks (for example, amino acids, nucleotides and lipids), 
the reconstructed network can be assessed in a step-wise 
fashion. For example, if proline is a non-essential amino 
acid for an organism then the metabolic network should 
contain a complete proline-biosynthesis pathway, 
even if some of the enzymes are not in the current 
one-dimensional annotation (this can sometimes 
lead to one-dimensional re-annotation37,38). Once all the 
main metabolic pathways or subsystems are assembled, 
several enzymatic activities, which do not participate in 
traditional biochemical pathways, that are included 
in the one-dimensional annotation need to be added 
to the reconstruction. These enzymes might be 
involved in the use of other carbon sources or connect 
different pathways.

Table 1 | Information that is contained in non-organism-specific databases

    KEGG   BRENDA UniProtKB     Entrez 
    Gene

 PubChem  MetaCyc  Transport
 DB

     TIGR  PSORTdb

Information about the definition of metabolic reactions

Substrate specificity √ √ √ √ √

Metabolite formulae √ √ √ √ √

Stoichiometry √ √ √ √

Reaction 
directionality

√ √ √ √

Subcellular 
localization 

√ √ √

Other information about metabolic-reaction properties

Genome sequence 
and annotation

√ √ √ √

GPR associations √ √ √ √

Literature √ √ √ √ √ √

GPR associations, gene–protein–reaction associations. 
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A reconstructed metabolic network can be repre-
sented in several ways: textually, graphically, and math-
ematically as a matrix. A textual representation, such as 
a list or database entry, can be easily shared and queried. 
A graphical representation, such as a map of nodes and 
edges, can be useful for analysing topological features 
of a network. An advantage of using a matrix represen-
tation is that it can be readily used to study quantita-
tive properties of a network by a growing number of 
computational methods (reviewed in REF. 40). Each row 
in a matrix representation corresponds to a particu-
lar chemical state of a network component and each 
column to a chemical transformation among the net-
work components (BOX 3). The elements of the matrix 
correspond to the stoichiometric coefficients of the 
metabolites in the individual chemical reactions. The 
resulting matrix is called the stoichiometric matrix, and 
is denoted by S. This matrix is a compact mathematical 

representation of a reconstructed network. Several 
systemic properties can be readily identified from the 
stoichiometric matrix, such as metabolite connectivity59 
and systemic reactions60.

The assembled reaction network depends on the 
genome of the organism. Gene–protein–reaction 
(GPR) associations formally connect reactions in the 
metabolic network to proteins and genes in the organ-
ism. These GPR associations indicate which genes 
encode which proteins and which enzymatic reactions 
these proteins catalyse (BOX 3). Once constructed, GPR 
associations can be used to relate various data types, 
including genomic, transcriptomic, proteomic and flux 
data. GPR associations need to distinguish between 
isozymes, enzyme complexes, enzyme subunits, and 
single and multifunctional enzymes39,45 so that they 
capture the complexity and diversity of the biological 
relationships. GPR associations are available for several 
reconstructed organisms4,39,45,53,61,105,106.

Automating network reconstruction. The manual 
reconstruction process is laborious and can take up to 
a year for a typical bacterial genome, depending on the 
amount of literature available. Recently, efforts have 
been made to automate the reconstruction process. 
Databases, such as KEGG52, can provide an automatic 
metabolic reconstruction, where reactions that are 
associated with enzyme-commission numbers present 
in a genome are included in the metabolic network. 
Pathway Tools62 is a program that can automate a net-
work reconstruction using metabolic reactions that are 
associated with enzyme-commission numbers and/or 
enzyme names from one-dimensional genome anno-
tation; it makes use of known metabolic pathways to 
evaluate reactions and pathways in a reconstruction. 
Defined pathways are scored by the program and 
included in the reconstruction on the basis of the 
number of enzymes in a pathway that are found in 
the one-dimensional annotation. Pathway Tools will 
include missing reactions in a pathway if a signifi-
cant fraction of the other enzymes in the pathway are 
present in the one-dimensional annotation. A number 
of these automated reconstructions have been gener-
ated using Pathway Tools3,63–68 and are available through 
BioCyc69.

The results of these informatics approaches are lim-
ited by the quality of the one-dimensional annotation 
that they operate on. Therefore, automated reconstruc-
tions need detailed evaluation to assure their accuracy. 
Potential problems with these automated reconstructions 
involve incorrect substrate specificity, reaction revers-
ibility, cofactor usage, treatment of enzyme subunits as 
separate enzymes and missing reactions that have no 
assigned ORFs36.

Although an initial list of genes and reactions can be 
easily obtained by using the automated methods that 
are mentioned above, a good reconstruction of a meta-
bolic or regulatory network requires the understanding 
of properties and characteristics of the organism or the 
cell. Because the number of experimentally veri-
fied gene products and reactions is limited for most 

Box 2 | Sources of information

Several data sources provide 
the information that is 
required to define metabolic 
reactions (BOX 1). The 
amount of data that is available 
will vary from organism to 
organism. The genome 
sequence and one-dimensional 
annotation is one of the most 
important sources of 
information, as it contains the 
most comprehensive list 
of the cellular components. 
Organism-specific literature 
is often available, providing 
information on biochemical 
characterization of enzymes, 
gene essentiality, minimal 
medium requirements and 
favourable growth 
environments. Physiological 
data are needed for evaluating 
the reconstruction and can be 
found in the literature or 
generated experimentally. 
Phylogenetic data are useful 
when a particular organism is 
not well studied but a close 
relative is; in these cases 
information can be inferred 
from a close relative. 
Organism-specific and non-
organism-specific databases 
(TABLE 1) contain a vast 
amount of data about gene 
function and associated 
metabolic activities. Cellular 
localization of enzymes can be 
predicted by several 
algorithms or can be taken 
from experimental data. 
OD 600,  optical density at 
a wavelength of 600 nm.

Metabolite connectivity
The number of reactions a 
given metabolite participates in.

Systemic reactions
Mathematically derived 
reactions which represent 
overall or dominant types of 
chemical transformation in a 
given network.

Isozymes
Proteins encoded by different 
genes that catalyse the same 
reaction.
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Computational model
A set of equations that  
mathematically represents 
network reconstruction and is 
used to predict the behaviour 
of a system.

Precursor metabolites
Metabolites that are generated 
by catabolic pathways and 
used by anabolic pathways to 
generate biomass components.

Biomass components
The macromolecules (proteins, 
carbohydrates, lipids and 
nucleotides), vitamins, 
cofactors, metals and minerals 
that make up a cell.

organisms, knowledge about the metabolic capabilities 
of the organism (such as non-essential amino acids for 
multicellular organisms or minimal media require-
ments for bacteria) is crucial. A combination of both 
automated and manual reconstruction efforts are 
needed to quickly generate accurate reconstructions.

Evaluation of a network reconstruction. Once the bio-
logical components are put together in a network recon-
struction and their interactions are formally de-scribed, 
basic network properties can be evaluated using a 
computational model. These are organism-specific 
genome-scale models that are built through succes-
sive iterations to increase their scope and coverage. 
Results of in silico evaluations are then compared 
with available biological, biochemical and physiologi-
cal information. An in silico model can be used to 
relate component interactions to network function-
alities that often represent observable phenotypic 
states. Such a model can ‘bring genomes to life’ 

by formally representing the genotype–phenotype 
relationship.

Network evaluation can be done sequentially by 
first examining if the model can generate the precursor 
metabolites, biomass components and metabolites 
that the organism is known to produce or degrade, 
and then identifying network gaps and completing 
metabolic pathways on the basis of physiological 
information, and finally comparing the network 
behaviour with various experimental observations 
(BOX 4). These experimental observations can include 
gene-expression data, P/O ratio, energy-mainte-
nance requirements and cellular phenotypes (see 
supplementary information S1 (box) for a more detailed 
discussion of network-evaluation methods). Network 
evaluation, although labour intensive, often leads to 
network adjustments, refinements and/or expansions.

Even genomes of well-studied organisms harbour 
genes of unknown function (for example, 20% for 
E. coli70). As a result, metabolic networks that are 

Table 2 | Organisms and network properties for which genome-scale metabolic reconstructions have been generated*

Organism Genes SKI Ng Nm Nr Status Refs

Bacteria

Bacillus subtilis 4,225 4.8 614 637 754 C, E 95

Escherichia coli 4,405 55.1 904
720
961

625
438
NA

931
627
1,107

C, E
C, E
C

39
92
53

Francisella tularensis 1,804 ND 350‡ NA 429 C 68

Geobacter sulfurreducens 3,530 ND 588 541 523 C, E 105

Haemophilus influenzae 1,775 8.9 296
400

343
451

488
461

C, E
C, E

96
97

Helicobacter pylori 1,632 13 341
291
301‡||

485
340
442||

476
388
533||

C, E
C, E
C

61
98
63

Lactococcus lactis 2,310 ND 358 422 621 C,E 99

Mannheimia succiniciproducens 2,463 ND 335 352 373 C, E 100

Pseudomonas aeruginosa 5,640 5.7 546
718

467
623

542
800

C, E
C

¶

67

Staphylococcus aureus 2,702 16 619 571 641 C, E 4

Streptomyces coelicolor 8,042 0.13 700 500 700 C, E 36

Archaea

Methanococcus jannaschii 1,821 0.3 436‡ 510 609 C 64

Methanosarcina barkeri 5,072 ND 692 558 619 C, E 106

Eukarya

Arabidopsis thaliana 28,848 ND 1,418 NA 894 C 66

Homo sapiens 28,783 48.5 2,709‡ 661 1,093 C 65

Mus musculus 28,287 15.6 1,156§ 872 1,220 C, E 94

Plasmodium falciparum 5,342 ND 737‡ 525 697 C 3

Saccharomyces cerevisiae 6,183 10.6 750
708

646
584

1,149
1,175

C, E
C, E

45
93

*Several non-curated automated reconstructions are also available from KEGG52 and BioCyc69. ‡Only enzyme numbers were reported. §Genes as reported101. 
||Latest numbers from HpCyc63. ¶J. Edwards, personal communication. C, a curated network; E, a network that is evaluated using computational modelling 
methods that are based on a stoichiometric matrix; NA, not available; ND, not determined; Ng, number of genes; Nm, number of metabolites; Nr, number of 
reactions; SKI, reported species knowledge index12. 
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HEX1 PGI PFK FBA TPI GAPD PGK PGM ENO PYK

Abbreviation Glycolytic reactions     Genes

HEX1 [c]GLC + ATP          G6P + ADP + H     glk 

PGI [c]G6P          F6P     pgi

PFK [c]ATP + F6P          ADP + FDP + H     pfkA, pfkB

FBA [c]FDP          DHAP + G3P     fbaA, fbaB

TPI [c]DHAP          G3P     tpiA

GAPD [c]G3P + NAD + PI          13DPG + H + NADH     gapA, gapC1, gapC2

PGK [c]13DPG + ADP          3PG + ATP     pgk

PGM [c]3PG          2PG     gpmA, gpmB

ENO [c]2PG          H2O + PEP     eno

PYK [c]ADP + H + PEP          ATP + PYR     pykA, pykF       

ATP –1 0 –1 0 0 0 1 0 0 1
GLC –1 0 0 0 0 0 0 0 0 0
ADP 1 0 1 0 0 0 –1 0 0 –1
G6P 1 –1 0 0 0 0 0 0 0 0
H 1 0 1 0 0 1 0 0 0 –1
F6P 0 1 –1 0 0 0 0 0 0 0
FDP 0 0 1 –1 0 0 0 0 0 0
DHAP 0 0 0 1 –1 0 0 0 0 0
G3P 0 0 0 1 1 –1 0 0 0 0
NAD 0 0 0 0 0 –1 0 0 0 0
PI 0 0 0 0 0 –1 0 0 0 0
13DPG 0 0 0 0 0 1 –1 0 0 0
NADH 0 0 0 0 0 1 0 0 0 0
3PG 0 0 0 0 0 0 1 –1 0 0
2PG 0 0 0 0 0 0 0 1 –1 0
PEP 0 0 0 0 0 0 0 0 1 –1
H2O 0 0 0 0 0 0 0 0 1 0
PYR 0 0 0 0 0 0 0 0 0 1

GapA

GAPD

b1676

b1416

gapC2

pykF

PykF

b2779

b1779

gapA

eno

Eno

ENO

and

GapC

PYK

b1854

b1417

gapC1

pykA

PykA

GAPD

ENO

PYK

HEX1

TPI

or

or

PGI

PFK

FBA

PGK
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Boolean rules
Logic statements that use 
Boolean operators (and, or, 
not) to evaluate the ‘on/off’ 
state of a variable.

P/O ratio
The number of ATP molecules 
(P) that are formed per oxygen 
atom (O) consumed during 
respiration.

Network gap
One or more reaction that is 
missing from the network 
reconstruction owing to the 
lack of direct genetic or 
biochemical evidence.

Blocked reactions
Reactions that, at steady 
state, can have no net flux 
(reactions that involve dead-
end metabolites are blocked 
reactions).

Pathway holes
Missing reactions from defined 
metabolic pathways such as 
glycolysis and amino-acid 
biosynthesis.

constructed solely on the basis of genomic and bio-
chemical evidence often contain many network gaps. 
Network gaps can be identified by analysing the ability of 
the network to generate individual biomass components 
that are needed for growth. For example, if a metabolic 
network is unable to generate a non-essential amino acid 
owing to missing steps in the biosynthetic pathways, the 
network gaps can be closed by completing the pathway 
with the missing reactions.

Physiological data, such as the growth capabilities of 
an organism, can be used to identify missing reactions or 
refine existing pathways. For example, metabolic path-
ways that are involved in the use of a carbon source can 
be added to a network reconstruction even in the absence 
of genomic or biochemical information if the organism 
can grow on the compound. The growth requirements 
of an organism therefore provide important evidence for 
improving, refining and expanding the quality and the 
content of the reconstructed networks. Reactions that 
are added to the network at this stage should be assigned 
low confidence scores because there are no genetic or 
biochemical data to confirm them.

Analytical tools can also be used to identify network 
gaps that involve reactions (blocked reactions or pathway 
holes) or metabolites (dead-end metabolites) that are iso-
lated from the rest of the network. Isolated reactions can 
be identified computationally using flux-coupling analysis71 
(or Pathway Tools) and isolated metabolites can be 

identified through metabolite connectivity39. Addition 
of any reaction to the reconstructed network to fill 
network gaps should be supported, if possible, by previ-
ous observations and/or presence in phylogenetically 
related organisms. Subsequently, for each added reac-
tion, putative genes can be identified using homology-
based and context-based computational techniques 
(such as those that are described in the section on one-
dimensional annotation)36,37,68. Such added reactions and 
putative assignments form a set of testable hypotheses 
that are subject to further experimental investigation. 
Reactions that cause network gaps can be removed from 
the network; for example, pathways that have many 
gaps might not occur in an organism and the functional 
assignment of associated genes should be re-examined38. 
On the other hand, gaps that were included on the basis of 
biochemical data indicate missing metabolic knowledge 
and should remain.

Discrepancies between predicted and experimen-
tal phenotypic data for genetic perturbations (either 
knockouts or knockdowns through small interfering 
RNA) on defined growth conditions can also be used to 
evaluate the content of the metabolic network. As 
described above, false negatives (for example, experi-
mental growth but no predicted in silico growth) can 
indicate that reactions are missing from the metabolic 
network or the existence of isozymes35,45. False positives 
(for example, growth that is predicted in silico without 

Box 3 | Assembly and representation

A list of charge and 
elementally balanced 
metabolic reactions can
be represented in a 
stoichiometric matrix (S), 
where rows and columns 
correspond to metabolites 
and reactions and the 
elements are the 
stoichiometric coefficients. 
In genome-scale metabolic 
networks these 
stoichiometric matrices 
contain few non-zero 
elements, as relatively few 
metabolites participate 
in a given reaction. 
Connections between 
genes and reactions can 
be represented as gene–
protein–reaction (GPR) 
associations by using 
Boolean rules or visualized 
using graphic images. In 
the GPR scheme, the first 
level (teal) corresponds to 
genetic loci, the second 
level (pink) to transcripts, 
the third level (orange) to 
functional proteins, and the 
fourth level (blue) to 
reactions. [c], cytoplasmic 
reactions. 

R E V I E W S

136 | FEBRUARY 2006 | VOLUME 7  www.nature.com/reviews/genetics



© 2006 Nature Publishing Group 

 

D (h–1)

ATPm

ATPbiomass

f  Physiological-data comparison

D (h–1) D (h–1)

Experiment
Model

Experiment
Model

b  Incorporating biomass

e  ATP-maintenance calculation

c  Filling network gaps

g  Knockout-data comparison

d  P/O ratio calculation

D = 0.1 % (w/w)
Proteins   
 Amino acids 45.0
 Free amino acids 1.1
Carbohydrates
 Monosaccharides –
 Disaccharides
  Trehalose 0.8
 Oligosaccharides –
 Polysaccharides
  Glycogen 8.4
  Mannan 13.1
 Other carbohydrates 18.4
Nucleotides
 RNA 6.3
 DNA 0.4
Lipids 2.9
Ash  5.0
Total 101.4

ETSI
II

IVIII

1.5 H+ 3 H+

3 H+

PG
K

PY
K

G
A

PD

EN
O

ATPase

AT
P 

(m
m

ol
 g

D
W

–1
 h

–1
)

g6p

f6p

g3p

3pg

pep

pyr

Acetyl-CoA
oxo

r5p

e4p

α kg

Knockout strains

En
vi

ro
nm

en
t

a  Precursor metabolite
compositionformation

Succinyl-
CoA qC

O
2 (

m
m

ol
 g

D
W

–1
  h

–1
)

qO
2 (

m
m

ol
 g

D
W

–1
 h

–1
)

Dead-end metabolites
A metabolite that is either only 
produced or only consumed 
by the metabolic network 
(pathway holes, network gaps 
and blocked reactions involve 
dead-end metabolites).

Flux-coupling analysis
A computational method that 
determines how fluxes through 
a pair of reactions are related.

experimental growth) can implicate reactions that are 
incorrectly included in the metabolic reconstruction35,45. 
Reactions that have a low confidence score (which indi-
cates that there is no genetic, biochemical or physiologi-
cal evidence) that cause false positives should probably 
be removed from the network. However, false positives 
can also be attributed to low expression or activity of an 
enzyme, and can point to potential kinetic or transcrip-
tional regulation. This type of analysis is particularly 
important for organisms for which limited genomic or 
biochemical information is available.

Network evaluation is highly dependent on the avail-
ability of data, especially physiological data, which can 

often be the most limiting factor. The amount of data is 
highly variable and depends on the organism being studied. 
As a result, substantial experimental and computational 
efforts will need to be combined for poorly characterized 
organisms to generate accurate one-dimensional and 
two-dimensional genome annotations.

Iterative network reconstruction and model building. 
The mathematical representation of metabolic networks 
allows for network evaluation not only for a specific 
metabolic pathway, but also for the large-scale network 
as a whole. Network reconstructions iteratively evolve as 
a result of network evaluation72, genome re-annotation43 

Box 4 | Network evaluation

Once a network is reconstructed and mathematically represented, the basic network capabilities must be evaluated in two 
steps: by evaluating the ability of the network to meet growth and physiological demands, and by incorporating and 
examining organism-specific network properties. A metabolic network must be able to generate all the precursor 
metabolites that are required for the synthesis of biomass components (a). In addition, biosynthetic pathways that are 
required for the formation of biomass components must also be present (b). The ability of the network to make the 
biosynthetic components implies that certain network gaps must be closed, even in the absence of direct genetic, 
biochemical or physiological data (c). If experimental data are available for the P/O ratio and the stoichiometry of the 
electron-transport system (ETS) in the cell, the efficiency of the network for making ATP through oxidative phosphorylation 
can be calculated (d). The energy maintenance that is required for growth (ATPbiomass)-associated and non-growth (ATPm)-
associated activities must also be incorporated into the network reconstruction (e).  ATP-maintenance values can be 
extrapolated from growth data. Once the energy maintenance is determined, the ability of the network to establish 
uptake and secretion rates for molecules such as CO2 or O2 (qCO2 or qO2) can be calculated and compared with 
experimental measurements (f). Evaluating the inconsistency between model and experimental-knockout results can lead 
to experimentation and biological discovery and increase network accuracy (g). Although network evaluation is more 
or less a sequential procedure in the order described, many of the steps might need to be repeated iteratively following 
changes to the network that arise from its evaluation. See supplementary information S1 (box) for more details. D, dilution 
rate; gDW, grams dry weight. Panel g is reproduced, with permission, from Nature REF. 35 © (2004) Macmillan Publishers Ltd. 
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and the availability of new experimental data (FIG. 2). 
Analysing high-throughput data such as transcrip-
tomic, proteomic and metabolomic data in the context 
of network reconstruction (that is, ‘putting content into 
context’) provides the means to evaluate the accuracy 
of the network reconstruction, to generate hypotheses 
about any inconsistencies and to evaluate experimental 
data within the context of functional roles. Combined 
analysis of transcriptomic, proteomic and protein-
interaction data has provided detailed description and 
a better understanding of galactose metabolism in 
Saccharomyces cerevisiae73. A genome-scale metabolic 
and regulatory model of E. coli was used to gener-
ate hypotheses about new metabolic reactions and 
regulatory interactions in the organism, by analysing 
gene-expression and physiological growth data35. 
A network reconstruction can therefore be used not 
only to improve and refine the accuracy of the network, 
but also as a tool to evaluate the consistency of various 
heterogeneous data sets within the context of a biological 
network, and to generate testable hypotheses that drive 
experimental discovery.

3D annotations: genome spatial orientation
The one-dimensional annotation conveys a list of 
genes and their functions, which can be translated into 
a table of gene products and their known interactions 
(two-dimensional annotation). The genome itself must 
operate within the three-dimensional confines of a 

cell. A growing number of studies indicate that both 
the genomic location (that is, the linear allelic address) 
and the spatial localization (that is, the position within 
the cell) of a gene is important for genome function 
(for review see REFS 74,75). The origin and terminus 
of replication in the Caulobacter crescentus genome 
are orientated towards opposite ends of the replicating 
cell and individual loci around the chromosome are 
localized linearly along the cell axis76. These observa-
tions support the hypothesis that genome location is 
not random74,75. Analysis of the genomic parameters 
shows location-dependent patterning of properties 
such as gene-expression levels77,78 and location of 
essential genes79–81. In addition, the metabolic energy 
state of a cell might influence the organization of 
a genome and the expression level of genes82,83. All 
of these studies indicate that the three-dimensional 
organization of the genome is important for proper 
cellular function. Annotating three-dimensional infor-
mation to a genome at this level is just emerging and 
we can expect progress to be made in this direction, 
especially when we can use technologies that allow us 
to resolve DNA organization on the 100-nm-length 
scale in a cell.

4D annotations: evolutionary changes
Genomes can undergo short-term adaptive changes. 
Therefore, one can think of a fourth dimension to 
genome function — time. Such adaptive changes can have 
an epigenetic or a genetic basis. These mechanisms and 
how they function during adaptation have been studied 
for individual loci (such as arcB84, glpR85, mglD and mglO 
(REF. 86) in E. coli, and PDR1 (REF. 87) in S. cerevisiae) but 
have not yet been elucidated on a genome scale, with 
the exception of genome rearrangements. There has 
been a growing realization that the genome sequences 
we have are ‘snap-shots’ of a genome that is continually 
changing. A fuller understanding of the plasticity and 
adaptation of genomes on a genome scale is needed. 
Full genome re-sequencing could provide information 
on the genetic basis of genome adaptation, allowing us 
to fully determine all the sequence changes that occur 
in genomes. High-accuracy mass spectroscopy and 
new low-cost sequencing methods have been used to 
re-sequence small and large portions of E. coli genomes 
that have undergone adaptive evolution88,89. Analysis of 
these sequence changes should provide insights into the 
mechanisms and functions of these adaptive evolutionary 
changes.

Future directions
The four dimensions of genome annotation are important 
for describing and capturing the functional capabilities of a 
cell. A detailed quality-controlled and quality-assessed proc-
ess for genome-scale network reconstruction (an example 
of a two-dimensional annotation) has developed over the 
past 5–10 years. It is a laborious and detailed process that 
involves manual curation of a wide range of data types. 
Similar to sequence assembly and one-dimensional 
genome annotation, this process of two-dimensional 
annotation is iterative, involving the successive addition 

Figure 2 | Model-guided network expansion. By comparing model predictions with 
experimental data, consistencies and inconsistencies can be identified. Consistencies 
can aid in the interpretation of data, whereas inconsistencies generate hypotheses 
about the organism, by the identification or elimination of components and/or 
interactions. An iterative process of model development, through comparison with 
experimental data, will not only lead to improved models but also expand our 
knowledge of the networks and organisms that are being studied.
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of more and more detailed data for a particular organism. 
These high-quality reconstructions can be used as the 
basis for computation of phenotypic traits, and they rep-
resent a key step in the development of the burgeoning 
field of systems biology90.

This entire process, from reaction definition to net-
work evaluation, yields highly curated genome-scale 
network reconstructions40, which have been reconciled 
with heterogeneous data sets. Genome-scale network 
reconstructions are biochemically, genomically and 
genetically structured databases that have defined 
confidence scores for the components and their inter-
actions. New data can be used to expand these recon-
structions, resulting in a history of iteratively built 
reconstructions such as those for E. coli 91.

Several reconstructions have been made for model 
organisms, including E. coli39,53,92, S. cerevisiae45,93, Mus 
musculus94 and H. sapiens65 (TABLE 2). More organisms 
are likely to follow suit including other multicellular 
model organisms (Caenorhabditis elegans, Drosophila 
melanogaster and Rattus norvegicus), human patho-
gens and organisms that are of industrial interest. 
Existing network reconstructions will continue to 
grow iteratively in content, scope and detail. A manual 
human reconstruction effort is currently underway 
(progress is tracked on the Human Metabolic Network 
Reconstruction web site), which will include cellular 
compartmentalization and track tissue distribution of 
enzymes. It will also account for transcript variations that 

arise from alternate splicing. When completed, it will be 
used to generate tissue-specific reconstructions to further 
study human disease states.

As genomic sciences continue to evolve we can 
anticipate that multiple dimensions in genome anno-
tation will appear as we characterize genome-scale 
functions. The expansion in dimensionality of genome 
annotation allows for the formalization of our knowl-
edge about genomes, their attributes and functions. 
Such efforts will show the breadth of backgrounds that 
are needed to master genome science and how they 
will serve to focus and integrate disciplines that until 
recently have been separate. One-dimensional anno-
tation is primarily based on bioinformatic analysis, 
two-dimensional annotation is the domain of network 
biology, three-dimensional annotation involves ultra-
structural studies on yet-to-be explored length scales 
and four-dimensional annotation will entail experi-
mental study of genome-scale sequence changes during 
adaptive evolution. Even higher-order annotation of 
genomes might eventually emerge. Well-curated multi-
dimensional annotation of genomes is fundamental to 
systems biology and genomic science. We currently 
have the methods and information needed to generate 
one-dimensional and two-dimensional annotations; 
as we learn more about the structural arrangement 
of genomes within the cell and how these genomes 
adaptively evolve we can begin to generate higher levels 
of annotation.

1.  Thiele, I., Price, N. D., Vo, T. D. & Palsson, B. O. 
Candidate metabolic network states in human 
mitochondria. Impact of diabetes, ischemia, and diet. 
J. Biol. Chem. 280, 11683–11695 (2005).

2.  Jamshidi, N., Wiback, S. J. & Palsson, B. O. In silico 
model-driven assessment of the effects of single 
nucleotide polymorphisms (SNPs) on human red blood 
cell metabolism. Genome Res. 12, 1687–1692 (2002).

3.  Yeh, I., Hanekamp, T., Tsoka, S., Karp, P. D. & 
Altman, R. B. Computational analysis of Plasmodium 
falciparum metabolism: organizing genomic 
information to facilitate drug discovery. Genome Res. 
14, 917–924 (2004).

4.  Becker, S. A. & Palsson, B. O. Genome-scale 
reconstruction of the metabolic network in 
Staphylococcus aureus N315: an initial draft to the 
two-dimensional annotation. BMC Microbiol. 5, 8 
(2005).

5.  Burgard, A. P., Pharkya, P. & Maranas, C. D. 
Optknock: a bilevel programming framework for 
identifying gene knockout strategies for microbial 
strain optimization. Biotechnol. Bioeng. 84, 647–657 
(2003).

6.  Alper, H., Jin, Y. S., Moxley, J. F. & Stephanopoulos, G. 
Identifying gene targets for the metabolic engineering 
of lycopene biosynthesis in Escherichia coli. Metab. 
Eng. 7, 155–164 (2005).

7.  Alper, H., Miyaoku, K. & Stephanopoulos, G. 
Construction of lycopene-overproducing E. coli strains 
by combining systematic and combinatorial gene 
knockout targets. Nature Biotechnol. 23, 612–616 
(2005).

8.  Fong, S. S. et al. In silico design and adaptive 
evolution of Escherichia coli for production of lactic 
acid. Biotechnol. Bioeng. 91, 743–748 (2005).

9.  Carlson, R., Fell, D. & Srienc, F. Metabolic pathway 
analysis of a recombinant yeast for rational strain 
development. Biotechnol. Bioeng. 79, 121–134 
(2002).

10.  Pharkya, P., Burgard, A. P. & Maranas, C. D. 
OptStrain: a computational framework for redesign of 
microbial production systems. Genome Res. 14, 
2367–2376 (2004).

11.  Liao, J. C., Hou, S. Y. & Chao, Y. P. Pathway analysis, 
engineering and physiological considerations for 
redirecting central metabolism. Biotechnol. Bioeng. 
52, 129–140 (1996).

12.  Janssen, P., Goldovsky, L., Kunin, V., Darzentas, N. & 
Ouzounis, C. A. Genome coverage, literally speaking. 
The challenge of annotating 200 genomes with 4 
million publications. EMBO Rep. 6, 397–399 
(2005).

13.  Stein, L. Genome annotation: from sequence to 
biology. Nature Rev. Genet. 2, 493–503 
(2001).
This article provides a thorough review of one-
dimensional annotation methods that involve 
gene finding and gene-functional assignment, as 
well as placing genes in the context of biological 
processes.

14.  Salzberg, S. L., Delcher, A. L., Kasif, S. & White, O. 
Microbial gene identification using interpolated 
Markov models. Nucleic Acids Res. 26, 544–548 
(1998).

15.  Salzberg, S. L., Pertea, M., Delcher, A. L., Gardner, M. J. 
& Tettelin, H. Interpolated Markov models for 
eukaryotic gene finding. Genomics 59, 24–31 (1999).

16.  Burge, C. & Karlin, S. Prediction of complete gene 
structures in human genomic DNA. J. Mol. Biol. 268, 
78–94 (1997).

17.  Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a 
new generation of protein database search programs. 
Nucleic Acids Res. 25, 3389–3402 (1997).

18.  Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & 
Lipman, D. J. Basic local alignment search tool. J. Mol. 
Biol. 215, 403–410 (1990).

19.  Pearson, W. R. & Lipman, D. J. Improved tools for 
biological sequence comparison. Proc. Natl Acad. Sci. 
USA 85, 2444–2448 (1988).

20.  Eddy, S. HMMER: profile HMMs for protein sequence 
analysis. HMMER: sequence analysis using pofile 
hidden Markov Models web site [online], <http://
hmmer.wustl.edu> (2003).

21.  Bowers, P. M. et al. Prolinks: a database of protein 
functional linkages derived from coevolution. Genome 
Biol. 5, R35 (2004).

This article describes several context-based 
methods for identifying genes that are functionally 
related. The article also announces the creation of 
the Prolinks database that includes results for 
several genomes.

22.  Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G. D. 
& Maltsev, N. Use of contiguity on the chromosome to 
predict functional coupling. In Silico Biol. 1, 93–108 
(1999).

23.  Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G. D. 
& Maltsev, N. The use of gene clusters to infer 
functional coupling. Proc. Natl Acad. Sci. USA 96, 
2896–2901 (1999).

24.  Enright, A. J., Iliopoulos, I., Kyrpides, N. C. & 
Ouzounis, C. A. Protein interaction maps for complete 
genomes based on gene fusion events. Nature 402, 
86–90 (1999).

25.  Marcotte, E. M. et al. Detecting protein function and 
protein–protein interactions from genome sequences. 
Science 285, 751–753 (1999).

26.  Marcotte, C. J. & Marcotte, E. M. Predicting functional 
linkages from gene fusions with confidence. Appl. 
Bioinformatics 1, 93–100 (2002).

27.  Wu, J., Kasif, S. & DeLisi, C. Identification of functional 
links between genes using phylogenetic profiles. 
Bioinformatics 19, 1524–1530 (2003).

28.  Pellegrini, M., Marcotte, E. M., Thompson, M. J., 
Eisenberg, D. & Yeates, T. O. Assigning protein 
functions by comparative genome analysis: protein 
phylogenetic profiles. Proc. Natl Acad. Sci. USA 96, 
4285–4288 (1999).

29.  Kharchenko, P., Vitkup, D. & Church, G. M. Filling gaps 
in a metabolic network using expression information. 
Bioinformatics 20 (Suppl. 1), I178–I185 (2004).

30.  Stuart, J. M., Segal, E., Koller, D. & Kim, S. K. A gene-
coexpression network for global discovery of 
conserved genetic modules. Science 302, 249–255 
(2003).

31.  Walker, M. G., Volkmuth, W., Sprinzak, E., Hodgson, 
D. & Klingler, T. Prediction of gene function by 
genome-scale expression analysis: prostate cancer-
associated genes. Genome Res. 9, 1198–1203 
(1999).

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 7 | FEBRUARY 2006 | 139



© 2006 Nature Publishing Group 

 

32.  Hughes, T. R. et al. Functional discovery via a 
compendium of expression profiles. Cell 102, 109–126 
(2000).

33.  Zhang, W. et al. The functional landscape of mouse 
gene expression. J. Biol. 3, 21 (2004).

34.  Kelley, R. & Ideker, T. Systematic interpretation of 
genetic interactions using protein networks. Nature 
Biotechnol. 23, 561–566 (2005).

35.  Covert, M. W., Knight, E. M., Reed, J. L., Herrgard, M. J. 
& Palsson, B. O. Integrating high-throughput and 
computational data elucidates bacterial networks. 
Nature 429, 92–96 (2004).
This article describes an iterative model-building 
approach for identifying new regulatory 
interactions that is based on gene-expression data. 
The work also resulted in the identification of 
knowledge gaps in metabolism and regulation from 
analysis of mutant phenotyping data.

36.  Borodina, I., Krabben, P. & Nielsen, J. Genome-scale 
analysis of Streptomyces coelicolor A3(2) metabolism. 
Genome Res. 15, 820–829 (2005).
This article describes a metabolic reconstruction 
that is generated by automated methods 
followed by manual curation for Streptomyces 
coelicolor. It discusses problems that are 
associated with automated reconstructions and 
provides examples where two-dimensional 
annotation enhanced one-dimensional 
annotation by finding genes for missing 
metabolic enzymes.

37.  Green, M. L. & Karp, P. D. A Bayesian method for 
identifying missing enzymes in predicted metabolic 
pathway databases. BMC Bioinformatics 5, 76 (2004).
This article presents a method for identifying the 
genes responsible for encoding enzymes that 
are missing from pathways in current metabolic 
reconstructions. This method was applied 
to reconstructions from three different organisms 
and led to new putative assignments for about half 
the missing enzymes.

38.  Karp, P. D., Krummenacker, M., Paley, S. & Wagg, J. 
Integrated pathway-genome databases and their role 
in drug discovery. Trends Biotechnol. 17, 275–281 
(1999).

39.  Reed, J. L., Vo, T. D., Schilling, C. H. & Palsson, B. O. An 
expanded genome-scale model of Escherichia coli K-12 
(iJR904 GSM/GPR). Genome Biol. 4, R54 (2003).

40.  Price, N. D., Reed, J. L. & Palsson, B. O. Genome-scale 
models of microbial cells: evaluating the consequences 
of constraints. Nature Rev. Microbiol. 2, 886–897 
(2004).
This review provides a comprehensive overview of 
developed methods for interrogating reconstructions 
using a constraint-based modelling approach.

41.  Papin, J. A., Hunter, T., Palsson, B. O. & 
Subramaniam, S. Reconstruction of cellular signalling 
networks and analysis of their properties. Nature Rev. 
Mol. Cell Biol. 6, 99–111 (2005).

42.  Papin, J. A. & Palsson, B. O. The JAK–STAT signaling 
network in the human B-cell: an extreme signaling 
pathway analysis. Biophys. J. 87, 37–46 (2004).

43.  Ouzounis, C. A. & Karp, P. D. The past, present and 
future of genome-wide re-annotation. Genome Biol 3, 
COMMENT2001 (2002).

44.  Schomburg, I. et al. BRENDA, the enzyme database: 
updates and major new developments. Nucleic Acids 
Res. 32, D431–D433 (2004).

45.  Duarte, N. C., Herrgard, M. J. & Palsson, B. O. 
Reconstruction and validation of Saccharomyces 
cerevisiae iND750, a fully compartmentalized 
genome-scale metabolic model. Genome Res. 14, 
1298–1309 (2004).

46.  Gardy, J. L. et al. PSORTb v. 2.0: expanded prediction 
of bacterial protein subcellular localization and 
insights gained from comparative proteome analysis. 
Bioinformatics 21, 617–623 (2005).

47.  Hua, S. & Sun, Z. Support vector machine approach 
for protein subcellular localization prediction. 
Bioinformatics 17, 721–728 (2001).

48.  Schneider, G. & Fechner, U. Advances in the prediction 
of protein targeting signals. Proteomics 4, 1571–1580 
(2004).

49.  Ross-Macdonald, P. et al. Large-scale analysis of the 
yeast genome by transposon tagging and gene 
disruption. Nature 402, 413–418 (1999).

50.  Huh, W. K. et al. Global analysis of protein 
localization in budding yeast. Nature 425, 686–691 
(2003).

51.  Gasteiger, E. et al. ExPASy: The proteomics server for 
in-depth protein knowledge and analysis. Nucleic 
Acids Res. 31, 3784–3788 (2003).

52.  Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of 
Genes and Genomes. Nucleic Acids Res. 28, 27–30 
(2000).

53.  Keseler, I. M. et al. EcoCyc: a comprehensive database 
resource for Escherichia coli. Nucleic Acids Res. 33, 
D334–D337 (2005).

54.  Overbeek, R. et al. WIT: integrated system for high-
throughput genome sequence analysis and metabolic 
reconstruction. Nucleic Acids Res. 28, 123–125 
(2000).

55.  Christie, K. R. et al. Saccharomyces Genome 
Database (SGD) provides tools to identify and analyze 
sequences from Saccharomyces cerevisiae and 
related sequences from other organisms. Nucleic 
Acids Res. 32, D311–D314 (2004).

56.  Krieger, C. J. et al. MetaCyc: a multiorganism 
database of metabolic pathways and enzymes. Nucleic 
Acids Res. 32, D438–D442 (2004).

57.  Vo, T. D., Greenberg, H. J. & Palsson, B. O. 
Reconstruction and functional characterization of the 
human mitochondrial metabolic network based on 
proteomic and biochemical data. J. Biol. Chem. 279, 
39532–39540 (2004).

58.  Neidhardt, F. C., Ingraham, J. L. & Schaechter, M. 
Physiology of the bacterial cell (Sinauer Associates, 
Sunderland, Massachusetts, 1990).

59.  Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & 
Barabasi, A. L. The large-scale organization of 
metabolic networks. Nature 407, 651–654 (2000).

60.  Famili, I. & Palsson, B. O. Systemic metabolic reactions 
are obtained by singular value decomposition of 
genome-scale stoichiometric matrices. J. Theor. Biol. 
224, 87–96 (2003).

61.  Thiele, I., Vo, T. D., Price, N. D. & Palsson, B. O. An 
expanded metabolic reconstruction of Helicobacter 
pylori (iIT341 GSM/GPR): An in silico genome-scale 
characterization of single and double deletion 
mutants. J. Bacteriol. 187, 5818–5830 (2005).

62.  Karp, P. D., Paley, S. & Romero, P. The Pathway Tools 
software. Bioinformatics 18 (Suppl. 1), S225–S232 
(2002).

63.  Paley, S. M. & Karp, P. D. Evaluation of computational 
metabolic-pathway predictions for Helicobacter pylori. 
Bioinformatics 18, 715–724 (2002).

64.  Tsoka, S., Simon, D. & Ouzounis, C. A. Automated 
metabolic reconstruction for Methanococcus 
jannaschii. Archaea 1, 223–229 (2004).

65.  Romero, P. et al. Computational prediction of human 
metabolic pathways from the complete human 
genome. Genome Biol. 6, R2 (2005).

66.  Zhang, P. et al. MetaCyc and AraCyc. Metabolic 
pathway databases for plant research. Plant Physiol. 
138, 27–37 (2005).

67.  Romero, P. & Karp, P. PseudoCyc, a pathway-genome 
database for Pseudomonas aeruginosa. J. Mol. 
Microbiol. Biotechnol. 5, 230–239 (2003).

68.  Larsson, P. et al. The complete genome sequence 
of Francisella tularensis, the causative agent of 
tularemia. Nature Genet. 37, 153–159 
(2005).

69.  Karp, P. D. et al. Expansion of the BioCyc collection of 
pathway/genome databases to 160 genomes. Nucleic 
Acids Res. 33, 6083–6089 (2005).

70.  Serres, M. H. et al. A functional update of the 
Escherichia coli K-12 genome. Genome Biol. 2, 
RESEARCH0035 (2001).

71.  Burgard, A. P., Nikolaev, E. V., Schilling, C. H. & 
Maranas, C. D. Flux coupling analysis of genome-scale 
metabolic network reconstructions. Genome Res. 14, 
301–312 (2004).

72.  Palsson, B. The challenges of in silico biology. Nature 
Biotechnol. 18, 1147–1150 (2000).

73.  Ideker, T. et al. Integrated genomic and proteomic 
analyses of a systematically perturbed metabolic 
network. Science 292, 929–934 (2001).
This article illustrates how the combination of 
experimental measurements and model 
predictions can be used to identify new network 
interactions. The experiments were carried out to 
better understand and generate new hypotheses 
concerning galactose utilization in yeast.

74.  Thanbichler, M., Viollier, P. H. & Shapiro, L. The 
structure and function of the bacterial chromosome. 
Curr. Opin. Genet. Dev. 15, 153–162 (2005).
This review discusses studies that relate to the 
topological (three-dimensional) structure of 
bacterial chromosomes. It describes recent 
evidence that the organization of bacterial 
chromosomes is non-random and that during 
replication the position of the genome within the 
cell is spatially arranged.

75.  Chakalova, L. et al. Replication and transcription: 
shaping the landscape of the genome. Nature Rev. 
Genet. 6, 669–677 (2005).

76.  Viollier, P. H. et al. Rapid and sequential movement of 
individual chromosomal loci to specific subcellular 
locations during bacterial DNA replication. Proc. Natl 
Acad. Sci. USA 101, 9257–9262 (2004).

77.  Allen, T. E. et al. Genome-scale analysis of the uses of 
the Escherichia coli genome: model-driven analysis 
of heterogeneous data sets. J. Bacteriol. 185, 
6392–6399 (2003).

78.  Jeong, K. S., Ahn, J. & Khodursky, A. B. Spatial 
patterns of transcriptional activity in the chromosome 
of Escherichia coli. Genome Biol. 5, R86 (2004).

79.  Gerdes, S. Y. et al. Experimental determination and 
system level analysis of essential genes in Escherichia 
coli MG1655. J. Bacteriol. 185, 5673–5684 
(2003).

80.  Rocha, E. P. & Danchin, A. Gene essentiality 
determines chromosome organisation in bacteria. 
Nucleic Acids Res. 31, 6570–6577 (2003).

81.  Rocha, E. P. & Danchin, A. Essentiality, not 
expressiveness, drives gene-strand bias in bacteria. 
Nature Genet. 34, 377–378 (2003).

82.  Hatfield, G. W. & Benham, C. J. DNA topology-
mediated control of global gene expression in 
Escherichia coli. Annu. Rev. Genet. 36, 175–203 
(2002).

83.  Travers, A. & Muskhelishvili, G. DNA supercoiling —  
a global transcriptional regulator for enterobacterial 
growth? Nature Rev. Microbiol. 3, 157–169 
(2005).

84.  Flores, N. et al. Adaptation for fast growth on glucose 
by differential expression of central carbon 
metabolism and gal regulon genes in an Escherichia 
coli strain lacking the phosphoenolpyruvate:
carbohydrate phosphotransferase system. Metab. 
Eng. 7, 70–87 (2005).

85.  Raghunathan, A. & Palsson, B. O. Scalable method to 
determine mutations that occur during adaptive 
evolution of Escherichia coli. Biotechnol. Lett. 25, 
435–441 (2003).

86.  Notley-McRobb, L. & Ferenci, T. Adaptive mgl-
regulatory mutations and genetic diversity evolving in 
glucose-limited Escherichia coli populations. Environ. 
Microbiol. 1, 33–43 (1999).

87.  Anderson, J. B. et al. Mode of selection and 
experimental evolution of antifungal drug resistance in 
Saccharomyces cerevisiae. Genetics 163, 1287–1298 
(2003).

88.  Honisch, C., Raghunathan, A., Cantor, C. R., Palsson, 
B. O. & van den Boom, D. High-throughput mutation 
detection underlying adaptive evolution of Escherichia 
coli-K12. Genome Res. 14, 2495–2502 (2004).

89.  Shendure, J. et al. Accurate multiplex polony 
sequencing of an evolved bacterial genome. Science 
309, 1728–1732 (2005).
This article describes a new non-electrophoretic 
DNA-sequencing method for rapid whole-genome 
sequencing and provides results for the DNA 
sequence of an adaptively evolved strain of 
E. coli.

90.  Palsson, B. O. Systems Biology: Properties of 
Reconstructed Networks (Cambridge Univ. Press, 
2006).

91.  Reed, J. L. & Palsson, B. O. Thirteen years of building 
constraint-based in silico models of Escherichia coli. 
J. Bacteriol. 185, 2692–2699 (2003).

92.  Edwards, J. S. & Palsson, B. O. The Escherichia coli 
MG1655 in silico metabolic genotype: its definition, 
characteristics, and capabilities. Proc. Natl Acad. Sci. 
USA 97, 5528–5533 (2000).

93.  Forster, J., Famili, I., Fu, P., Palsson, B. O. & Nielsen, J. 
Genome-scale reconstruction of the Saccharomyces 
cerevisiae metabolic network. Genome Res. 13, 
244–253 (2003).

94.  Sheikh, K., Forster, J. & Nielsen, L. K. Modeling 
hybridoma cell metabolism using a generic genome-
scale metabolic model of Mus musculus. Biotechnol. 
Prog. 21, 112–121 (2005).

95.  Park, S. M., Schilling, C. H. & Palsson, B. O. 
Compositions and methods for modeling Bacillus 
subtilis metabolism (US Patent and Trademark Office, 
2003).

96.  Schilling, C. H. & Palsson, B. O. Assessment of the 
metabolic capabilities of Haemophilus influenzae Rd 
through a genome-scale pathway analysis. J. Theor. 
Biol. 203, 249–283 (2000).

97.  Edwards, J. S. & Palsson, B. O. Systems properties of 
the Haemophilus influenzae Rd metabolic genotype. 
J. Biol. Chem. 274, 17410–17416 (1999).

R E V I E W S

140 | FEBRUARY 2006 | VOLUME 7  www.nature.com/reviews/genetics



© 2006 Nature Publishing Group 

 

98.  Schilling, C. H. et al. Genome-scale metabolic model of 
Helicobacter pylori 26695. J. Bacteriol. 184, 
4582–4593 (2002).

99.  Oliveira, A. P., Nielsen, J. & Forster, J. Modeling 
Lactococcus lactis using a genome-scale flux model. 
BMC Microbiol. 5, 39 (2005).

100.  Hong, S. H. et al. The genome sequence of the 
capnophilic rumen bacterium Mannheimia 
succiniciproducens. Nature Biotechnol. 22, 
1275–1281 (2004).

101.  Eppig, J. T. et al. The Mouse Genome Database 
(MGD): from genes to mice — a community resource 
for mouse biology. Nucleic Acids Res. 33, 
D471–D475 (2005).

102.  Palsson, B. O. Two-dimensional annotation of 
genomes. Nature Biotechnol. 22, 1218–1219 2004).

103. Woldringh, C. L. The role of co-transcriptional 
translation and protein translocation (transertion) in 
bacterial chromosome segregation. Mol. Microbiol. 
45, 17–29 (2002).

104.  Ibarra, R. U., Edwards, J. S. & Palsson, B. O. 
Escherichia coli K-12 undergoes adaptive evolution to 
achieve in silico predicted optimal growth. Nature 
420, 186–189 (2002).

105.  Mahadevan, R. et al. Characterization of metabolism 
in the Fe(III)-reducing organism Geobacter 
sulfurreducens by constraint-based modeling. Appl. 
Environ. Microbiol. (in the press).

106.  Feist, A. M. et al. Modeling methanogenesis with a 
genome-scale metabolic reconstruction of  
Methanosarcina barkeri. Mol. Systems Biol. (in the 
press).

Acknowledgements
The authors would like to thank T. Allen and S. Fong for useful 
comments on the manuscript. This work was funded in part 

by the US National Institutes of Health. B.O.P. serves on the 
scientific advisory board of Genomatica, Inc.

Competing interests statement
The authors declare competing financial interests: see web 
version for details.

FURTHER INFORMATION
BRENDA — the comprehensive enzyme information 
system: http://www.brenda.uni-koeln.de
Entrez Gene: http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?db=gene
ExPASy Proteomics Server: www.expasy.org
GENSCAN: http://bioweb.pasteur.fr/seqanal/interfaces/
genscan.html
GlimmerM: http://www.tigr.org/software/glimmerm
Human Metabolic Network Reconstruction web site: 
http://gcrg.ucsd.edu/organisms/human_flyer4.pdf
KEGG — Kyoto Encyclopedia of Genes and Genomes: 
http://www.genome.ad.jp/kegg
MetaCyc: http://metacyc.org
Pathway Tools: http://bioinformatics.ai.sri.com/ptools
PSORTdb: http://db.psort.org
PubChem: http://pubchem.ncbi.nlm.nih.gov
The GLIMMER homepage: http://www.tigr.org/~salzberg/
glimmer.html
TIGR — The Institute for Genomic Research: http://www.
tigr.org
TransportDB: http://www.membranetransport.org
UniProtKB: http://us.expasy.org/uniprot

SUPPLEMENTARY INFORMATION
See online article: S1 (box)
Access to this links box is available online.

R E V I E W S

NATURE REVIEWS | GENETICS  VOLUME 7 | FEBRUARY 2006 | 141



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly true
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.30000
    0.30000
    0.30000
    0.30000
  ]
  /PDFXOutputIntentProfile (OFCOM_PO_P1_F60)
  /PDFXOutputCondition (OFCOM_PO_P1_F60)
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF004e00500047002000570045004200200050004400460020004a006f00620020004f007000740069006f006e0073002e0020003100350030006400700069002e002000320032006e0064002000530065007000740065006d00620065007200200032003000300034002e002000500044004600200031002e003400200043006f006d007000610074006900620069006c006900740079002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 782.362]
>> setpagedevice




