Self-adapting Backfilling Scheduling for Parallel Systems'

Barry G. Lawson

Department of Mathematics and Computer Science

University of Richmond
Richmond, VA 23173, USA
blawson@richmond.edu

Abstract

We focus on non-FCFS job scheduling policies for par-
allel systems that allow jobs to backfill, i.e., to move ahead
in the queue, given that they do not delay certain previ-
ously submitted jobs. Consistent with commercial sched-
ulers that maintain multiple queues where jobs are as-
signed according to the user-estimated duration, we pro-
pose a self-adapting backfilling policy that maintains mul-
tiple job queues to separate short from long jobs. The pro-
posed policy adjustsits configuration parameters by contin-
uously monitoring the system and quickly reacting to sud-
den fluctuations in the workload arrival pattern and/or se-
vere changes in resource demands. Detailed performance
comparisons via simulation using actual Supercomputing
traces from the Parallel Workload Archive indicate that the
proposed policy consistently outperforms traditional back-
filling.

Keywords: batch schedulers, parallel systems, backfilling
schedulers, performance analysis.

1. Introduction

In recent years, scheduling parallel programs in multi-
processor architectures has consistently puzzled researchers
and practitioners. Parallel systems consist of resources that
have to be shared among a community of users. Resource
allocation in such systems is a non-trivial problem. Exam-
ples of issues that exacerbate the resource allocation prob-
lem include the number of users that attempt to use the
system simultaneously, the parallelism of the applications
and their respective computational and storage needs, the
wide variability of the average job execution time coupled
with the variability of requested resources (e.g., proces-
sors, memory), the continuously changing job arrival rate,

*This work was partially supported by the National Science Founda-
tion under grants EIA-9977030, EIA-9974992, CCR-0098278, and ACI-

0090221.

Evgenia Smirni, Daniela Puiu
Department of Computer Science
College of William and Mary
Williamsburg, VA 23187-8795, USA
{esmirni,dxpuiu}@cs.wm.edu

meeting the execution deadlines of applications, and co-
scheduling distributed applications across multiple indepen-
dent systems each of which may itself be parallel with its
own scheduler.

Many scheduling policies have been developed with
the goal of providing better ways to handle the incoming
workload by treating interactive jobs differently than batch
jobs [1]. Among the various batch schedulers that have been
proposed, we distinguish a set of schedulers that allows the
system administrator to customize the scheduling policy ac-
cording to the site’s needs. The Maui Scheduler is widely
used by the high performance computing community [6]
and provides a wide range of configuration parameters that
allows for site customization. Similarly, the PBS sched-
uler [10] operates on networked, multi-platform UNIX en-
vironments, including heterogeneous clusters of worksta-
tions, Supercomputers, and massively parallel systems, and
allows for the implementation of a wide variety of schedul-
ing solutions. Generally, these schedulers maintain several
queues (to which different job classes are assigned), permit
assigning priorities to jobs, and allow for a wide variety of
scheduling policies per queue. The immediate benefit of
such flexibility in policy parameterization is the ability to
change the policy to better meet the incoming workload de-
mands. Policy customization to meet the needs of an ever
changing workload is a difficult task.

We concentrate on a class of space-sharing run-to-
completion policies (i.e., no job preemption is allowed after
a job is allocated its required processor resources) that are
often found in the heart of many popular parallel workload
schedulers. This class of policies, commonly cited as back-
filling policies, opt not to execute incoming jobs in their
order of arrival but rather rearrange their execution order to
reduce system fragmentation and ensure better system uti-
lization [5, 13]. Users are expected to provide nearly accu-
rate estimates of the job execution times. Using these es-
timates, the scheduler rearranges the queue, allowing short
jobs to move to the top of the queue provided they do not
starve certain previously submitted jobs. Backfilling is ex-

Workload || Mean Exec. | Median Exec. | C.V. Exec. || Mean Number | Median Number | C.V. Number
Time Time Time Processors Processors Processors
CTC 10,983 946 1.65 11 2 2.26
KTH 8,876 845 2.19 8 3 1.61
SP2 6,118 514 2.37 10 4 1.59
PAR 7,416 175 2.01 16 8 1.46

Table 1. Summary statistics of the four selected workloads. All times are reported in seconds.

tensively used by many schedulers, most notably the IBM
LoadLeveler scheduler [4] and the Maui Scheduler [6]. Var-
ious versions of backfilling have been proposed [3, 5, 9].
[3] characterizes the effect of job length and parallelism
on backfilling performance and [9] proposes sorting by job
length to improve backfilling.

In this paper, we propose a batch scheduler that is based
on the aggressive backfilling strategy extensively analyzed
in [5]. In contrast to all of the above backfilling-related
works, we maintain multiple queues and separate effec-
tively long from short jobs. The policy is inspired by related
work in task assignment for distributed servers that strongly
encourages separation of jobs according to their length, es-
pecially for workloads with execution times characterized
by long-tailed distributions [11, 12]. Similarly, observed
high variance in job execution times in parallel workload
traces advocates separating long from short jobs in parallel
schedulers.

Our multiple-queue policy assigns incoming jobs to dif-
ferent queues using user estimates of the job execution
times. Essentially, we split the system into multiple non-
overlapping subsystems, one subsystem per queue. In this
fashion, we manage to reduce the average job slowdown by
reducing the likelihood that a short job is queued behind a
long job. Furthermore, our policy modifies the subsystem
boundaries on the fly according to the incoming workload
intensities and execution demands. By continuously moni-
toring the scheduler’s ability to handle the incoming work-
load, the policy adjusts its parameters to guarantee high sys-
tem utilization and throughput while improving the average
job slowdown.

We conduct a set of simulation experiments using trace
data from the Parallel Workload Archive [7]. The traces
offer a rich set of workloads taken from actual Supercom-
puting centers. Detailed workload characterization, focus-
ing on how the job arrivals and resource demands change
across time, guides us into the development of a robust pol-
icy that performs well under transient workload conditions.

This paper is organized as follows. Section 2 contains
a characterization of the workloads used to drive our sim-
ulations. Section 3 presents the proposed policy. Detailed
performance analysis of the proposed policy is given in Sec-
tion 4. Concluding remarks are given in Section 5.

2. Variability in Workloads

The difficulty of scheduling parallel resources is deeply
interwoven with the inherent variability in parallel work-
loads. Because our goal is to propose a robust policy that
works efficiently regardless of the workload type, we first
closely examine real parallel workloads of production sys-
tems. We select four workload logs from the parallel work-
load archive [7]. Each log provides the arrival time of each
job (i.e., the job submit time), the number of processors re-
quested, the estimated duration of the job, the actual dura-
tion of the job, the start time of the job, and possible addi-
tional resource requests (e.g., memory per node). The se-
lected traces are summarized below.

e CTC: This trace contains entries for 79302 jobs that
were executed on a 512-node IBM SP2 at the Cornell
Theory Center from July 1996 through May 1997.

e KTH : This trace contains entries for 28 490 jobs ex-
ecuted on a 100-node IBM SP2 at the Swedish Royal
Institute of Technology from Oct. 1996 to Aug. 1997.

e PAR: This trace contains entries for 38 723 jobs that
were executed on a 416-node Intel Paragon at the San
Diego Supercomputer Center during 1996.

e SP2: This trace contains entries for 67667 jobs exe-
cuted on a 128-node IBM SP2 at the San Diego Super-
computing Center from May 1998 to April 2000.

Table 1 provides summary statistics for the selected traces®.
Observe the wide disparity of the mean job execution time
across workloads. Also notice the difference (of as much as
two orders of magnitude) between the mean and the median
within a workload. The high coefficients of variation (C.V.)
in job execution times coupled with the large differences
between mean and median values suggest the existence of
a “fat tail” in the distribution of execution times. Log-log
complementary distribution plots confirm the absence of a

LA common characteristic in many of these traces is that the system ad-
ministrator places an upper limit on the job execution time. If this limit is
reached, the job is killed. Our statistics include the terminated jobs; there-
fore, some of our output statistics are higher than those reported elsewhere

(e.g., see [2]).

(8 cTC

3500

3000
2500
2000
1500

Number of Jobs

1000
500 - R

20 25 30 35 40 45

week

5 10 15

(9 PAR
2000 ‘

1600

1200

800

Number of Jobs

400

O 1 | |
10 20 30 40 50

week

(b) KTH

1200

1000

800

600

Number of Jobs

400

200 ~ R

5 10 15 20 25 30 35 40 45
week

(d) sP2
8000 | :

7000 - A
6000 - A
5000 -
4000 -
3000 -
2000 -

1000 M\/\J

| | |
0 20 40 60 80 100

week

Number of Jobs

Figure 1. Total number of arriving jobs per week as a function of time (weeks).

heavy tail in the distributions [2], but run times nonethe-
less remain very skewed within each workload. This type
of distribution advocates separating jobs according to their
duration to different queues in order to minimize queuing
time of short jobs that are delayed behind very long jobs.

Significant variability is also observed in the average
“width” of each job, i.e., the number of per-job requested
processors. To determine whether job duration and job
width are independent attributes, we compute their statis-
tical correlation for each workload. Results are mixed. In
some cases, positive correlation is detected, while in other
cases there is no correlation at all. Because job duration and
job width strongly affect the backfilling ability and perfor-
mance of a policy, we further elaborate on these two metrics
later in this section.

The two parameters that affect performance and schedul-
ing decisions in queuing systems are the arrival process
and the service process. To visualize the time evolution of
the arrival process, we plot for each trace the total number
of arriving jobs per week as a function of time (see Fig-
ure 1). We observe bursts in the arrival process?, but not of
the same magnitude as the “flash crowds” experienced by
web servers. Significant differences in the per-week arrival
intensity exist within each workload, as well as across all

2Bursts also exist relative to smaller time units (e.g., days and hours),
but such graphs are omitted for the sake of brevity.

workloads. For this reason we focus not only on aggregate
statistics (i.e., the average performance measures obtained
after simulating the system using the entire workload trace),
but also on transient statistics within specific time windows.

We now consider the service process. Because Table 1
indicates wide variation in job service times, we classify
jobs according to job duration. After experimenting with
several classifications, we choose the following four-part
classification. Across all workloads, this classification pro-
vides a representative proportion of jobs in each class (see
Figure 2).

e class1: Short jobs are those with execution time < 100

seconds.

e class 2: Medium jobs are those with execution time
> 100 seconds and < 1000 seconds.

e class 3: Long jobs are those with execution time >
1000 seconds and < 10 000 seconds.

e class4: Extra-long jobs are those with execution time
> 10 000 seconds.

Figure 2 presents the service time characteristics of the four
workloads. The left column depicts the overall and per-class
mean job execution time as a function of the trace time?3.

3We compute statistics for batches of 1000 jobs, but plot each batch as
a function of the arrival time of the first job in the batch.

Mean Job Service Time (in sec.)

—

Mean Job Service Time (in sec.)

30000

20000

10000

30000

20000

10000

25000

20000

15000

10000

5000

d) sP2

50000

40000

30000

20000

10000

All Jobs

class 1 (<= 100 sec)

class 2 (> 100 sec and <= 1000 sec)
class 3 (> 1000 sec and <= 10000 sec)

class 4 (> 10000 sec)

T

|

!
Eovay AT 4
'(VH N , iy AN S
SN AN R
[T} Ny T ol
b | i
\ [
L \ |
bedacebeod DR SR Py SN Dy R S

5 10 15 20 25 30 35 40 4
week

o
25 30 35 40 45
week

5 10 15

C.V. of Job Service Time

C.V. of Job Service Time

C.V. of Job Service Time

C.V. of Job Service Time

14

[N
)

=
o

©

I class1
[class2

T class3
1 class4

o

IS

N

o

Proportion Jobs/Class

week

Proportion Jobs/Class

week

T R B B R
20 25 30 35 40 45

&

IS

w

N

[iN

Proportion Jobs/Class

Proportion Jobs/Class

week

5 10 15 20 25 30 35 40 45
week

5 10 15 20 25 30 35 40 45
week

20 40 60 80 100
week

Figure 2. Service time characteristics of the four workloads.

The center column in Figure 2 depicts the overall and per-
class C.V. of the average job execution time. Finally, the
right column depicts the proportion of jobs per class. Ob-
serve that the mean job execution times and the overall C.V.
(solid line) vary significantly across time. As expected, for
all workloads the per-class C.V. is considerably smaller than
the overall C.V. For all traces the proportion of jobs in each
class varies dramatically with time.

3. Scheduling Palicies

In actual parallel systems, successful scheduling policies
use backfilling, a non-FCFS approach. Backfilling permits
a limited number of queued jobs to jump ahead of jobs that
cannot begin execution immediately. Backfilling is a core
component of commercial schedulers including the IBM
LoadLeveler [4] and the popular Maui Scheduler [6]. Here
we propose a new policy, based on backfilling, that adapts
its scheduling parameters according to changing workload
conditions. Before introducing our new policy, we first de-
scribe the basic backfilling paradigm.

3.1. Single-Queue Backfilling

Backfilling is a commonly used scheduling policy that
attempts to minimize fragmentation of system resources by
executing jobs in an order different than their submission
order [3, 5]. A job that is backfilled is allowed to jump
ahead of jobs that arrived earlier (but are delayed because
of insufficient idle processors) in an attempt to exploit oth-
erwise currently idle processors. The order of job execution
is handled differently by two types of backfilling. Conser-
vative backfilling permits a job to be backfilled provided it
does not delay any previous job in the queue. Aggressive
backfilling ensures only that the first job in the queue is not
delayed. We consider aggressive backfilling as the baseline
policy because results have shown its performance superior
to conservative backfilling [5].

Basic aggressive backfilling assumes a single queue of
jobs to be executed. Jobs enter this queue when submitted
by the user. Each job is characterized by its arrival time,
by the number of processors required (i.e., the job width),
and by an estimate of the expected execution time. Aggres-
sive backfilling is a non-preemptive, space-sharing policy.
Any job that attempts to execute for a time greater than its
estimated execution time is terminated by the system.

The single-queue backfilling policy always attempts to
backfill as many queued jobs as possible. In general, the
process of backfilling exactly one of these many jobs oc-
curs as follows. Define the pivot job to be the first job in
the queue. If there are currently idle processors sufficient
for the pivot job, the scheduler starts executing the pivot

immediately, and a new pivot is defined appropriately. Oth-
erwise, the scheduler sorts all currently executing jobs in
order of their expected completion time. The scheduler can
then determine the pivot time, i.e., the time when sufficient
processors will be available for the pivot job. At the pivot
time, any idle processors not required for the pivot job are
denoted as extra processors. The scheduler then searches
for the first queued job that

e requires no more than the currently idle processors and
will finish by the pivot time, or

e requires no more than the minimum of the currently
idle processors and the extra processors.

If such ajob is found, the job is backfilled, i.e., the scheduler
starts executing the job immediately; otherwise, the sched-
uler continues searching the list of queued jobs until either
a job is backfilled or the search is exhausted.

This process of backfilling exactly one job is repeated
until all queued jobs have been considered for backfilling.
Hence, the single-queue backfilling policy attempts to back-
fill as many jobs as possible until no more jobs can be back-
filled. This basic single-queue aggressive backfilling algo-
rithm, employed whenever a job is submitted to the system
or whenever a job completes execution, is outlined in Fig-
ure 3.

Single-queue aggressive backfilling ensures that once a
job becomes the pivot, it cannot be delayed. A job may be
delayed in the queue before becoming the pivot, but when
the job reaches the front of the queue, it is assigned a sched-
uled starting time. If a currently executing job finishes early,
the pivot may begin executing earlier than its assigned start-
ing time, but it will never begin executing after the assigned
starting time.

3.2. Multiple-Queue Backfilling

Because the performance of any scheduling policy is
sensitive to the transient nature of the impending workload,
we propose a multiple-queue backfilling policy that permits
the scheduler to quickly change parameters in response to
workload fluctuations. Our goal is to decrease the average
job slowdown by reducing the number of short jobs delayed
by longer jobs.

The multiple-queue backfilling policy splits the system
into multiple digoint partitions. The splitting is accom-
plished by classifying jobs according to the job duration
as described in Section 2. We incorporate four separate
queues, one per job class (i.e., per system partition), indexed
by ¢ = 1,2, 3,4. As jobs are submitted to the system, they
are assigned to exactly one of these queues based on the
user estimate of execution time. Let ¢, be the estimate (in
seconds) of the execution time of a submitted job. Here, we

for (all jobs in queue)
1. pivot job +— first job in queue
2. if possible, start pivot job immediately
3. else

I. consider next job in queue

a. sort running jobs in order of completion time

b. pivot time «+— time when sufficient processors will be available for pivot job
C. extra procs «— idle processors at pivot time not used by pivot job

d. while (no job backfilled and more queued jobs to consider)

I1. if job requires < currently idle procs and will finish by pivot time, start job immediately
[11. else if job requires < min{currently idle procs, extra procs}, start job immediately

Figure 3. Basic single-queue aggressive backfilling algorithm.

consider that the user provides accurate estimates of the ex-
pected execution time*. The job is assigned to the queue in
partition ¢ according to the following equation, consistent
with the job classification presented in Section 2.

1, 0 <t < 100
)2 100 <t. < 1000
=93 3 1000 <t < 10000

4, 10000 <t.

Note that the assignment of a job to a queue is based solely
on the user estimate of job execution time and not on the
number of requested processors. Initially, the processors
are distributed evenly among the four partitions. As time
evolves, processors may move from one partition to another
(i.e., the partitions may contract or expand) so that currently
idle processors in one partition can be used for immediate
backfilling in another partition. Hence, the partition bound-
aries become dynamic, allowing the system to adapt itself
to changing workload conditions. We stress that the policy
does not starve a job that requires the entire machine for
execution. When such a job is ready to begin execution (ac-
cording to the job arrival order), the scheduler allocates all
processors to the partition where the job is assigned. Af-
ter the job completes, the processors will be redistributed
among the four partitions according to the ongoing proces-
sor demands of each partition.

The multiple-queue backfilling policy considers all
queued jobs (one at a time, in the order of arrival across
all queues). Similar to the single-queue backfilling policy,
define the following:

e idle, : the number of currently idle processors in parti-
tionq;

e pivot, : the first job in the queue in partition ¢ ;

4For details regarding sensitivity of the policy to inaccurate estimates
we refer the interested reader to [8].

e pivot-time, : the scheduled starting time for pivot,
(i.e., the earliest time when sufficient processors will
be available for pivot,);

e extra, : the number of idle processors in partition ¢ at
pivot-time, not required for pivot,,.

The sufficient processors available at pivot-time,, consist of
idle, and, if necessary, some combination of idle and/or ex-
tra processors from other partitions such that no other pivot
that arrived earlier than pivot, is delayed. The assignment
of a scheduled starting time to a pivot job will never delay
any current pivot in another partition (i.e., any other pivot
that arrived earlier), suggesting that the algorithm is dead-
lock free.

The policy always attempts to backfill as many queued
jobs as possible. In general, exactly one of these many jobs
is backfilled as follows. Let ¢ be the queue where the job
resides. If the job is pivot,, the scheduler starts execut-
ing the job immediately only if the current time is equal to
pivot-time,, in which case a new pivot, is defined appropri-
ately. If the job is not pivot,, the scheduler starts executing
the job immediately only if there are sufficient idle proces-
sors in partition ¢ without delaying pivot,, or if the partition
can take idle processors sufficient to meet the job’s require-
ments from one or more other partitions without delaying
any pivot.

This process of backfilling one job is repeated, one job
at a time in the order of arrival across all queues, until all
queued jobs have been considered for backfilling. Hence,
the multiple-queue backfilling policy attempts to backfill as
many jobs as possible until no more jobs can be backfilled.
This multiple-queue aggressive backfilling algorithm, em-
ployed whenever a job is submitted to the system or when-
ever a job completes execution, is outlined in Figure 4.

In both the single-queue and multiple-queue aggressive
backfilling policies, the goal is to backfill jobs in order to
exploit idle processors and reduce system fragmentation.

for (all jobs in order of arrival)
1. ¢ «— queue in which job resides
2. pivot, <— first job in queue ¢
will be available for pivot,

5. if job is pivot,
a. if current time equals pivot-time,,

I1. start job immediately
6. else

[1. start job immediately

3. pivot-time, <— earliest time when sufficient procs (from this and perhaps other partitions)

4. extra, <— idle processors in partition g at pivot-time, not used by pivot,

I. if necessary, reassign procs from other partitions to partition ¢

a. if job requires < idle, and will finish by pivot-time,,, start job immediately
b. else if job requires < min{idle,, extra, }, start job immediately
c. else if job requires < (idle, plus some combination of idle/extra procs from other partitions)
such that no pivot is delayed
. reassign necessary procs from other partitions to partition ¢

Figure 4. Multiple-queue aggressive backfilling algorithm.

Both policies ensure that once a job reaches the front of
the queue, it cannot be delayed further.

By classifying jobs according to job length, the multiple-
queue policy reduces the likelihood that a short job will be
overly delayed in the queue behind a very long job. Ad-
ditionally, because processors are permitted to cross par-
tition boundaries, the multiple-queue policy can quickly
adapt to a continuously changing workload. Unlike com-
mercial schedulers that typically are difficult to parame-
terize, multiple-queue backfilling requires only an a priori
definition of job classes, and then the policy automatically
adjusts the processor-to-class allocations. In the following
section, we elaborate on the above issues and their effect on
performance.

4. Performance Analysis

We evaluate and compare via simulation the perfor-
mance of the two backfilling policies presented in the pre-
vious section. Our simulation experiments are driven us-
ing the four workload traces from the Parallel Workload
Archive described in Section 2. From each trace record,
we extract three values: the job arrival time, the job exe-
cution time, and the number of requested processors. Con-
sequently, our experiments fully capture the fluctuations in
the average job arrival rate and service demands.

We concentrate both on aggregate performance mea-
sures, i.e., measures collected at the end of the simulation
that reflect the average achieved performance across the en-
tire life of the system, and on transient measures, i.e., the
average performance measures perceived by the end-user

during each time interval corresponding to 1000 job re-
quests®.

The performance measure of interest that we strive to
optimize is the average job slowdown s defined by

d
s=14+—
v

where d and v are respectively the queuing delay time and
actual service time of a job®.

To compare the single-queue and multiple-queue back-
filling results, we define the slowdown ratio R by the equa-
tion

51 — Sm

min{s1, S, }

where s, and s, are the single-queue and multiple-queue
slowdowns respectively’. R > 0 indicates the performance
gain obtained using multiple queues relative to a single
queue. R < 0 indicates the performance loss that results
from using multiple queues relative to a single queue.

SConsistent with Section 2, we use a batch size of 1000 for reasons of
statistical significance.

6Bounded slowdown [5] is another popular performance measure. For
the sake of brevity, we omit performance results for bounded slowdown
that we obtained. Note that the performance of each of the two policies is
qualitatively the same using either of the two measures.

"Because of the min{s, s, } term in the denominator, R is a fair,
properly scaled measure of the performance that equally quantifies gain or
loss experienced using multiple queues relative to a single queue. If we
instead use s, (or for the same matter s1) in the denominator, we bias the
measure toward gains (or losses).

4.1. Multiple-Queue Ver sus Single-Queue Backfill-
ing

Figure 5 depicts the aggregate slowdown ratio R of
multiple-queue backfilling relative to single-queue back-
filling for each of the four traces. Figures 5(b)-(e) de-
pict the aggregate per-class slowdown ratios (i.e., for short,
medium, long, and extra-long jobs). The figure clearly indi-
cates that the multiple-queue algorithm offers dramatic per-
formance gains for all but the extra-long job class. For over-
all average slowdown (see Figure 5(a)), the multiple-queue
policy is superior to the single-queue policy.

Figures 5(b)—(e) confirm that, by splitting the system
into multiple partitions, we manage to reduce the number
of short jobs overly delayed behind extra-long jobs. Across
all workloads, jobs belonging to all but the extra-long job
class achieve significant performance gains. Additionally,
extra-long jobs experience a decline in average slowdown,
but the magnitude of decline is generally much less than the
magnitude of improvement seen in the other job classes.

Transient measures illustrate how well each policy re-
sponds to sudden arrival bursts. Furthermore, transient mea-
sures reflect the end-user perception of system performance,
i.e., how well the policy performs during the relatively small
window of time that the user interacts with the system. Fig-
ure 6 displays transient snapshots of the slowdown ratio ver-
sus time for each of the four traces. For all traces, marked
improvement (i.e., R > 0) in slowdown is achieved using
the multiple-queue backfilling policy. Although the single-
queue policy gives better slowdown (i.e., R < 0) for a rel-
atively few batches, multiple-queue backfilling excels with
more frequent and larger improvements.

4.2. Multiple-Queue Backfilling with Delays

Because the decline in average slowdown for extra-long
jobs (Figure 5(e)) is typically much less than the improve-
ment for all job classes combined (Figure 5(a)), a natural
extension to multiple-queue backfilling is to further impede
extra-long jobs. Therefore, we hinder any extra-long job by
assigning to it a delay when submitted to the system. Let
D be the global delay (in seconds) and let ¢ ; be the time of
submission of an extra-long job; the job can begin execution
no earlier than ¢, + D. The goal is to further assist shorter
jobs in an attempt to improve the overall average slowdown.
To address policy flexibility, we adjust the delay parameter
on the fly according to the current perceived performance.
By continuously monitoring the average job slowdown of
each job class, the policy simply increments or decrements
the delay parameter accordingly. Our goal is to increase the
delay on extra-long jobs only when short jobs are suffering,
and to reduce the delay when short jobs are overly favored.

More specifically, for batches of 100 completed jobs, we

monitor the average slowdown of short jobs in each batch.
Let Dy, be the global variable delay imposed on extra-long
jobs for the kth batch (k = 1,2,...), where Dy is the ini-
tial delay. Let si represent the average slowdown of short
jobs in the kth batch, and let §;, represent the proportional
difference in s; and s;_1 according to the equation
O0p = L fork >1
max{sg, Sk—1}

with §; = s1. To avoid too frequent modifications, the delay
for batch k£ + 1 is modified only if the proportional differ-
ence &y, is more than 0.25 (i.e., if the difference in average
slowdown for short jobs from the previous batch to the cur-
rent batch changes by more than 25%). If so, we change the
global delay by an amount equal to the proportional differ-
ence multiplied by the original delay®; otherwise, the global
delay remains unchanged for the next batch. To summarize,
the adjusted delay used for batch & + 1 is computed via the
following algorithmic steps.

1. compute dy,
2.if |6k| > 0.25, then Dy = max{Dk + 6Dy, 0}
3.else Dy = Dy,

Figure 7 again depicts the aggregate slowdown ratio R
for each of the four traces. For each trace, we show the
gain/loss obtained using multiple-queue backfilling with no
delay and with variable delay using D; = 2500. In all
cases, multiple-queue backfilling with variable delay clearly
surpasses single-queue backfilling (i.e., R > 0).

5. Conclusions

We presented a self-adapting, multiple-queue backfill-
ing policy for parallel systems that directs incoming jobs to
different queues according to the user estimated job execu-
tion time. By separating short from long jobs, the multiple-
queue policy reduces the likelihood that a short job is overly
delayed in the queue behind a very long job, and therefore
significantly improves the expected job slowdown. Each
queue is assigned a non-overlapping partition of system re-
sources on which jobs from the queue can execute. The
proposed policy changes the partition boundaries to adapt
to evolution of the workload across time.

Multiple-queue backfilling uses minimal parameteriza-
tion. The policy only requires an a priori definition of job
classes that regulates the assignment of jobs to queues. This
definition of job classes can be easily changed as the system
administrator deems appropriate. Furthermore, because of
the dynamic nature of the partition boundaries, these ex-
ternal parameters should seldom require modification. De-
tailed performance comparisons via simulation using actual

8Clearly, Dy, 1 must be non-negative.

(a) All Classes

1.6
14 r
o 12
g 1
c
§ 0.8
S 06
5
D 04r
02
0
CTC KTH
(b) Class 1 (time <= 100)
1.6
14
g lz2r k=
& 1 &
c =
2 06 =
[=] [=]
D 04t 7]
021
0
CTC KTH PAR SP2
(d) Class 3 (1000 < time <= 10000)
0.8
0.7
o 06 2
& 05 &
o o
2 031 3
] 5
[%2) 02r (%]
01r ’—‘
0

CTC KTH PAR SP2

PAR

-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
-0.35

(c) Class 2 (100 < time <= 1000)

CTC KTH PAR SP2

(e) Class 4 (time > 10000)

CTC

KTH PAR

Figure 5. Overall and per-class aggregate slowdown ratio R for each of the four traces.

Supercomputing traces from the Parallel Workload Archive
indicate that the proposed policy consistently outperforms
traditional single-queue backfilling. Because of its robust-
ness, simplicity, flexibility, and applicability to ever chang-
ing workloads, multiple-queue backfilling is an attractive
policy for scheduling parallel resources.

Acknowledgments

We thank Tom Crockett for useful discussions that con-
tributed to this work. We also thank Dror Feitelson for
making available the workload traces through the Parallel
Workload Archive.

References
[1] Feitelson D.G., “A survey of scheduling in multiprogrammed paral-
lel systems”, Technical Report RC 19790, IBM Research Division,
October 1994.

[2] Feitelson D.G., “Metrics for Parallel Job Scheduling and Their Con-
vergence”, in Proceedings of the 7th Workshop on Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph

3]

[4]
[5]

(6]

[7]

(8]

[]

(Eds.), pp. 188-206, Springer-Verlag, 2001. Lecture Notes in Com-
puter Science Vol. 2221.

Keleher P., Zotkin D., Perkovic D, “Attacking the Bottlenecks in
Backfilling Schedulers”, in Cluster Computing: The Journal of Net-
works, Software Tools and Applications, 3(4): 2000.

IBM LoadLeveler, http://www. ibm. com.

Mualem A.W., Feitelson D.G., “Utilization, Predictability, Work-
loads, and User Runtime Estimates in Scheduling the IBM SP2 with
Backfilling”, IEEE Trans. Parallel and Distributed Syst. 12(6), pp.
529-543, June 2001.

Maui Scheduler Open Cluster Software,
http://mauischeduler.sourceforge.net/.

Parallel Workload Archive,
http://www.cs.huji.ac.il/labs/parallel/workload/.

B.G. Lawson, E. Smirni, “Multiple-queue Backfilling Scheduling
with Priorities and Reservations for Parallel Systems”, submitted for
publication, May 2002.

Perkovic D., Keleher P., “Randomization, Speculation, and Adapta-
tion in Batch Schedulers”, in Proceedings of Supercomputing 2000
(SC2000), November 2000.

[10] Portable Batch System, http://www.openpbs.org/.

(@ CTC
8 T T T
7, -
6, -
o 5
g 4
c 3
g
E
3 1
n 0
-1
-2
_3 | | | | | | | | |
0 5 10 15 20 25 30 35 40 45
week
(c) PAR
7 T T
6,
5,
Q
T 4r
o
c 3F
2
E|
o 1r
n
0,
_1,
_2 | | | | |
0 10 20 30 40 50
week

Slowdown Ratio

Slowdown Ratio

(b) KTH

10 15 20 25 30 35 40 45
week

—_ 1
105

(d) SP2
12 :

10 - B

40 60 80
week

Figure 6. Slowdown ratio R per 1000-job submissions as a function of time for each of the four traces.

[11]

[12]

[13]

A. Riska, W. Sun, E. Smirni, G. Ciardo, “AdaptLoad: effective bal-
ancing in clustered web servers under transient load conditions”, to
appear at the 22nd International Conference on. Distributed Com-
puting Systems, (ICDCS 2002), Vienna, Austria, July 2002.

Schroeder B., Harchol-Balter M., “Evaluation of Task Assignment
Policies for Supercomputing Servers: The Case for Load Unbalanc-
ing and Fairness”, in Proceedings of the 9th IEEE Symposium on
High Performance Distributed Computing (HPDC ’00), Pittsburgh,
Pennsylvania, August 2000.

Talby D., Feitelson D.G., “Supporting priorities and improving uti-
lization of the IBM SP2 scheduler using slack-based backfilling”, in
Proceedings of the 13th International Parallel Processing Sympo-
sium, pp. 513-517, Apr 1999.

25
e 27 i
&
c 151 1
2
o
=}
g Lr 1
7]
0
CTC KTH PAR SP2
L1 .
no delay variable delay

Figure 7. Aggregate slowdown ratio R using
multiple-queue backfilling with no delay and
variable delay. All slowdown ratios are com-
puted relative to single-queue backfilling.

