Research and Education with MapReduce/Hadoop: Data-Intensive Text Processing and Beyond

Jimmy Lin
The iSchool
University of Maryland

(with Tamer Elsayed, Chris Dyer, Philip Resnik, and Doug Oard)

Monday, October 5, 2009
Why large data?

Because they’re there...
How much data?

- Google processes 20 PB a day (2008)
- Wayback Machine has 3 PB + 100 TB/month (3/2009)
- Facebook has 2.5 PB of user data + 15 TB/day (4/2009)
- eBay has 6.5 PB of user data + 50 TB/day (5/2009)
- CERN’s LHC will generate 15 PB a year (??)

640K ought to be enough for anybody.
Unreasonable Effectiveness of Data
by Alon Halevy, Peter Norvig, and Fernando Pereira

(Banko and Brill, ACL 2001)
(Brants et al., EMNLP 2007)
How do we move the entire field forward?
How do we educate future computer scientists?

Google/IBM ACCI
NSF CLuE

Maryland participation since Fall 2007
MapReduce

- MapReduce provides an abstraction for large-scale distributed algorithms
 - Programmer writes mappers and reducers… that’s it!
- MapReduce “runtime” takes care of distributed execution
 - Handles scheduling, data distribution, synchronization, faults…
 - Seamless scaling out: 1000’s of nodes+, 100’s of TB+
- Vibrant open-source software ecosystem
 - Hadoop: implementation of MapReduce
 - Pig: higher-level dataflow language
 - Hive: data warehouse application
 - …

Focus on NLP/IR algorithms, not system-level details!
Explicit goal: integration of research and education
- Basic idea: Ph.D. students leading teams of masters and undergraduate students
- Goal: tackle “Web-scale” research problems and generate publishable results (and they did!)

Organization:
- 3 week Hadoop “boot camp”; rest of the time spent on projects
- Half a dozen teams on a variety of projections
- Course used early configuration of the CLuE Cluster

Follow-on course in Fall 2009

Similar efforts at U. Washington, Berkeley, etc.
Research/Education Integration
Case study #1:
DNA Sequence Alignment

Spring 2008: Michael Schatz* (Ph.D. student, Computer Science)
Fall 2008: Ben Langmead* (M.S. student, Computer Science)

*Advised by Mihai Pop and Steven Salzberg
Research/Education Integration
Case study #2: Statistical Machine Translation

Chris Dyer* (Ph.D. student, Linguistics)
Aaron Cordova (undergraduate, Computer Science)
Alex Mont (undergraduate, Computer Science)

*Advised by Philip Resnik
SMT with MapReduce

We've built MapReduce Implementations of these two components!

Training Data
- i saw the small table
- vi la mesa pequeña

Parallel Sentences
- he sat at the table
- the service was good

Target-Language Text

Word Alignment

Phrase Extraction
- (vi, i saw)
- (la mesa pequeña, the small table)

Language Model

Translation Model

Decoder

maria no daba una bofetada a la bruja verde

Foreign Input Sentence

mary did not slap the green witch

English Output Sentence

Experiments on earlier 38-core configuration of the CLuE Cluster
Research/Education Integration

Case study #3:
Identity Resolution in Email

Tamer Elsayed * (Ph.D. student, Computer Science)
Greg Jablonski (MLS student, the iSchool)
Alan Jackoway (undergraduate, Computer Science)

*Advised by Doug Oard
Identity Resolution in Email

Date: Wed Dec 20 08:57:00 EST 2000
From: Kay Mann <kay.mann@enron.com>
To: Suzanne Adams <suzanne.adams@enron.com>
Subject: Re: GE Conference Call has been rescheduled

Who dat?
Did Sheila want Scott to participate? Looks like the call will be too late for him.

Is this a real problem?
Did Sheila want Scott to participate? Looks like the call will be too late for him.
Sources of Evidence

Topical Context

Conversational Context

Local Context

Social Context
Identity Models

Identity resolution = identify correct email address

Representational Model

sheila glover
1170 (in User Name)

sheila.glover@enron.com

932 (in Main Headers)
14 (in Quoted Headers)

sheila
glover

216 (in Signature)
19 (in Salutation)

77,240 models
Mention Resolution with MapReduce
Constructing the Mention Graph

○ Local and conversational context: easy

○ Topical and social context: more difficult
 ● Boils down to a pairwise similarity comparison problem
 ● Topical context: bag of words
 ● Social context: bag of participants

○ We’ve developed an efficient MapReduce for pairwise similarity
 ● Basic idea: build inverted index, cross each positing with itself
 ● MapReduce does all the heavy lifting

The Future?

- “Web-scale” processing will become a necessity, not merely a luxury
 - Comoditization of cluster computing → different models of accessing cloud resources
 - Education will remain critical to ensuring progress
- We’ve only just begun…
 - Richer distributed programming models
 - Innovations in system architectures
 - Breakthroughs in applications
- Continued need for academic/industrial partnerships!