Dryad and DryadLINQ
General-purpose Distributed Computing using a High-level Language

Michael Isard
Microsoft Research Silicon Valley
Distributed Data-Parallel Computing

• Workloads beyond standard SQL, HPC
 – Data-mining, graph analysis, ...
 – Complex, long-lived application software

• Cloud (shared clusters)
 – Transparent scaling
 – Resource virtualization

• Commodity hardware
 – Fault tolerance with good performance
Talk overview

• Part I
 – High-level language: LINQ
 – Computational model: DAG
 – Execution layer: Dryad+Quincy

• Part II
 – Dryad systems issues
 – Comparison with MapReduce
 – DryadLINQ demo
LINQ

• Microsoft’s Language INtegrated Query
 • Operators to manipulate datasets in .NET
 – Dataset is a first-class abstraction
 – Select, Join, GroupBy, Aggregate, etc.
 – *Set at a time*, instead of looping over *Object at a time*
 • Integrated into .NET programming languages
 – Programs can call operators
 – Operators can invoke arbitrary .NET functions
 • Data model
 – Data elements are strongly typed .NET objects
 – Much more expressive than SQL tables
 • Extensible
 – Add new operators and implementations
Aggregating partial sums

class PartialSum { public int sum; public int count; };

static double MergeSums(PartialSum[] sums)
{
 int totalSum = 0, totalCount = 0;
 int i;
 for (i = 0; i < sums.Length; ++i)
 {
 totalSum += sums[i].sum;
 totalCount += sums[i].count;
 }
 return (double) totalSum / (double) totalCount;
}
Aggregating partial sums

class PartialSum { public int sum; public int count; };

static double MergeSums(PartialSum[] sums)
{
 return (double) sums.Select(x => x.sum).Sum() /
 (double) sums.Select(x => x.count).Sum();
}
Convenient syntax

var words =
 tableOfLines.SelectMany(l => l.Split(' ')).GroupBy(w => w);
Convenient syntax

```csharp
var words =
    tableOfLines.SelectMany(l => l.Split(' ')).GroupBy(w => w);

IQueryable<IGrouping<string,string>> words =
    tableOfLines.SelectMany(mySplitFunction).GroupBy(myStringIdentity);

IEnumerable<string> mySplitFunction(string line)
{
    return line.Split(' ');
}

string myStringIdentity(string word)
{
    return word;
}
```
K-means algorithm
K-means algorithm
K-means algorithm
K-means algorithm
K-means helper functions

class Vector { ... }

Vector Mean(IEnumerable<Vector> set) {
 Vector sum = set.Aggregate((x, y) => x + y);
 return sum / set.Count();
}

Vector NearestNeighbor(Vector vect, IEnumerable<Vector> set) {
 return set.Min(e => (e - vect).L2Norm());
}
K-means algorithm

IEnumerable<Vector> kMeansStep(IEnumerable<Vector> vectors,
 IEnumerable<Vector> centers) {
 var clusters = vectors.GroupBy(
 vector => NearestNeighbor(vector, centers).VectorId);
 return clusters.Select(cluster => Mean(cluster));
}

IEnumerable<Vector> kMeans(IEnumerable<Vector> vectors,
 IEnumerable<Vector> centers) {
 for (int i = 0; i < iterations; i++) centers = kMeansStep(vectors, centers);
 return centers;
}
Data mining, machine learning, ...

- Decision-tree training
- SVD
- Power iteration (PageRank)
- Image feature extraction/indexing/clustering
- Network trace analysis
- Light-field simulation
- ...

Talk overview

• Part I
 – High-level language: LINQ
 – Computational model: DAG
 – Execution layer: Dryad+Quincy

• Part II
 – Dryad systems issues
 – Comparison with MapReduce
 – DryadLINQ demo
Computational model: DAG

• Distributed processing
 – Partition computation across cores/cluster
 – Minimize communication overhead

• Directed-acyclic graph
 – Edge is finite sequence of data items
 – Vertex is computation over input edge sequences
DAG abstraction

• Explicit dataflow
 – Exposes dependencies within computation

• Absence of cycles
 – Allows re-execution for fault-tolerance
 – Simplifies scheduling: no deadlock

• Cycles can often be replaced by unrolling
 – Unsuitable for fine-grain inner loops

• Very popular
 – Databases, functional languages, ...
Map

• Independent transformation of dataset
 – for each \(x \) in \(S \), output \(x' = f(x) \)
• E.g. simple grep for word \(w \)
 – output line \(x \) only if \(x \) contains \(w \)
Map

• Independent transformation of dataset
 – for each x in S, output \(x' = f(x) \)
• E.g. simple grep for word w
 – output line x only if x contains w
Map

• Independent transformation of dataset
 – for each x in S, output $x' = f(x)$
• E.g. simple grep for word w
 – output line x only if x contains w
Reduce

• Grouping plus aggregation
 – 1) Group x in S according to key selector k(x)
 – 2) For each group g, output r(g)

• E.g. simple word count
 – group by k(x) = x
 – for each group g output key (word) and count of g
Reduce

• Grouping plus aggregation
 – 1) Group x in S according to key selector k(x)
 – 2) For each group g, output r(g)

• E.g. simple word count
 – group by k(x) = x
 – for each group g output key (word) and count of g
Reduce
Reduce

Diagram: S₁ → G → r → S' with S₁, S₂, S₃ connected to G.
Reduce

D is *distribute*, e.g. by hash or range
ir is initial reduce, e.g. compute a partial sum
K-means
K-means
PageRank
Distributed Word Count

Count word frequency in a set of documents:

```csharp
var words = docs.SelectMany(doc => doc.words);
var groups = words.GroupBy(word => word);
var counts = groups.Select(g => new WordCount(g.Key, g.Count()));
```

![Diagram](image-url)
Execution Plan for Word Count

```
SelectMany
sort
 groupby
count
distribute
mergesort
 groupby
Sum
```

1. \text{SM} \rightarrow \text{GB} \rightarrow \text{S}

\text{SM} \rightarrow \text{Q} \rightarrow \text{GB} \rightarrow \text{C} \rightarrow \text{D}

\text{SM} \rightarrow \text{MS} \rightarrow \text{GB} \rightarrow \text{Sum}

\text{pipelined}

\text{pipelined}
Execution Plan for Word Count
Talk overview

• Part I
 – High-level language: LINQ
 – Computational model: DAG
 – Execution layer: Dryad+Quincy

• Part II
 – Dryad systems issues
 – Comparison with MapReduce
 – DryadLINQ demo
Dryad

• General-purpose execution engine
 – Batch processing on immutable datasets
 – Well-tested on large clusters

• Automatically handles
 – Fault tolerance
 – Distribution of code and intermediate data
 – Scheduling of work to resources
Fault tolerance

• Buffer data in (some) edges
• Re-execute on failure using buffered data
• Speculatively re-execute for stragglers
Rewrite graph at runtime

• Loop unrolling with convergence tests
• Adapt partitioning scheme at run time
 – Choose #partitions based on runtime data volume
 – Broadcast Join vs. Hash Join, etc.
• Adaptive aggregation and distribution trees
 – Based on data skew and network topology
• Load balancing
 – Data/processing skew (cf work-stealing)
Dryad System Architecture
Dryad System Architecture

Scheduler

R

R
Quincy DAG Scheduler

- Data locality and fairness (SLAs)
- SOSP 2009
Production system

• Dryad well-tested, scalable
 – Daily use supporting Bing for over 3 years
 – Clusters with >10k computers

• Applicable to large number of computations
 – 250 computer cluster at MSR SVC, Mar->Nov 09
 • 15k jobs (tens of millions of processes executed)
 • Hundreds of distinct programs
 – Network trace analysis, privacy-preserving inference, light-transport simulation, decision-tree training, deep belief network training, image feature extraction, ...
Conclusion

• DryadLINQ supports many computations
 – Easy to use, flexible
• DAG-structured jobs scale to large clusters
 – Transient failures common, disk failures daily
• Publically available for download
 http://connect.microsoft.com/Dryad
Talk overview

• Part I
 – High-level language: LINQ
 – Computational model: DAG
 – Execution layer: Dryad+Quincy

• Part II
 – Dryad systems issues
 – Comparison with MapReduce
 – DryadLINQ demo
Dryad Inputs and Outputs

• Partitioned data set
 – Records do not cross partition boundaries
 – Data on compute machines: NTFS, SQLServer, ...

• Optional semantics
 – Hash-partition, range-partition, sorted, etc.

• Loading external data
 – Partitioning “automatic”
 – File system chooses sensible partition sizes
 – Or known partitioning from user
Partitioning driven by data
Partitioning driven by data
Push vs Pull

• Databases typically ‘pull’ using iterator model
 – Avoids buffering
 – Can prevent unnecessary computation
• But DAG must be fully materialized
 – Complicates rewriting
 – Prevents resource virtualization in shared cluster
Channel abstraction
Push vs Pull

• Channel types define connected component
 – Shared-memory or TCP must be gang-scheduled
• Pull within gang, push between gangs
Fault tolerance

• Buffer data in (some) edges
• Re-execute on failure using buffered data
• Speculatively re-execute for stragglers
• ‘Push’ model makes this very simple
DryadLINQ Internals

• Distributed execution plan
 – Static optimizations: pipelining, eager aggregation, etc.
 – Dynamic optimizations: data-dependent partitioning, dynamic aggregation, etc.

• Automatic code generation
 – Vertex code that runs on vertices
 – Channel serialization code
 – Callback code for runtime optimizations
 – Automatically distributed to cluster machines

• Separate LINQ query from its local context
 – Distribute referenced objects to cluster machines
 – Distribute application DLLs to cluster machines
Decomposable Functions

• Roughly, a function H is decomposable if it can be expressed as composition of two functions IR and C such that
 – IR is commutative
 – C is commutative and associative

• Some decomposable functions
 – Sum: IR = Sum, C = Sum
 – Count: IR = Count, C = Sum
 – OrderBy.Take: IR = OrderBy.Take,
 \[C = SelectMany.OrderBy.Take \]
Two Key Questions

• How do we decompose a function?
 – Two interfaces: iterator and accumulator
 – Choice of interfaces can have significant impact on performance

• How do we deal with user-defined functions?
 – Try to infer automatically
 – Provide a good annotation mechanism
Iterator Interface in DryadLINQ

```csharp
public static IntPair SumAndCount(IEnumerable<int> g) {
    return new IntPair(g.Sum(), g.Count());
}

public static IntPair InitialReduce(IEnumerable<int> g) {
    return new IntPair(g.Sum(), g.Count());
}

public static IntPair Combine(IEnumerable<IntPair> g) {
    return new IntPair(g.Select(x => x.first).Sum(), g.Select(x => x.second).Sum());
}
```

[Decomposable("InitialReduce", "Combine")]

Accumulator Interface in DryadLINQ

```csharp
[Decomposable("Initialize", "Iterate", "Merge")]
public static IntPair SumAndCount(IEnumerable<int> g) {
    return new IntPair(g.Sum(), g.Count());
}

public static IntPair Initialize() {
    return new IntPair(0, 0);
}

public static IntPair Iterate(IntPair x, int r) {
    x.first += r;
    x.second += 1;
    return x;
}

public static IntPair Merge(IntPair x, IntPair o) {
    x.first += o.first;
    x.second += o.second;
    return x;
}
```
Iterator PartialSort

- G1+IR and G2+C
 - Keep only a fixed number of chunks in memory
 - Chunks are processed in parallel: sorted, grouped, reduced by IR or C, and emitted

- G3+F
 - Read the entire input into memory, perform a parallel sort, and apply F to each group

- Observations
 - G1+IR can always be pipelined with upstream
 - G3+F can often be pipelined with downstream
 - G1+IR may have poor data reduction
 - PartialSort is the closest to MapReduce
Accumulator FullHash

• G1+IR, G2+C, and G3+F
 – Build an in-memory parallel hash table: one accumulator object/key
 – Each input record is “accumulated” into its accumulator object, and then discarded
 – Output the hash table when all records are processed

• Observations
 – Optimal data reduction for G1+IR
 – Memory usage proportional to the number of unique keys, not records
 • So, we by default enable upstream and downstream pipelining
 – Used by DB2 and Oracle
Talk overview

• Part I
 – High-level language: LINQ
 – Computational model: DAG
 – Execution layer: Dryad+Quincy

• Part II
 – Dryad systems issues
 – Comparison with MapReduce
 – DryadLINQ demo
MapReduce (Hadoop)

• MapReduce restricts
 – Topology of DAG
 – Semantics of function in compute vertex

• Sequence of instances for non-trivial tasks
MapReduce language complexity

• Simple to describe MapReduce model
• Can be hard to map algorithm to framework
 – cf k-means: combine C+P, broadcast C, iterate, ...
 – HIVE, PigLatin etc. mitigate programming issues
MapReduce system complexity

• Simple to describe MapReduce system
• Implementation not uniform
 – Different fault-tolerance for mappers, reducers
 – Add more special cases for performance
 • Hadoop introducing TCP channels, pipelines, ...
 – Dryad has same state machine everywhere
DryadLINQ demo
Conclusions

• High-level language is good
 – For ease of use, maintainability, expressiveness

• Computational abstraction is important
 – Suitable target for compiler, not developer
 • Common patterns should be efficient
 • Optimization should be easy

• LINQ is a pretty good language abstraction

• DAG is a very good computational model