CogNeuro: Difference between revisions
Computational Linguistics and Information Processing
No edit summary |
No edit summary |
||
(12 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
This is a repository that is updated periodically with resources to analyze continuous, naturalistic neuroimaging data with computational tools. It is split into three sections: | This is a repository that is updated periodically with resources to analyze continuous, naturalistic neuroimaging data with computational tools. It is split into three sections: | ||
;Datasets: EEG/MEG | ;Datasets: Naturalistic fMRI/EEG/MEG | ||
;Toolkits & Tutorials :For neuroimaging data analysis | ;Toolkits & Tutorials :For neuroimaging data analysis | ||
;Relevant Background:Selected papers, podcasts, talks, course videos, books | ;Relevant Background:Selected papers, podcasts, talks, course videos, books | ||
==Datasets== | |||
*LPP-fMRI corpus (English, Chinese, French) | *LPP-fMRI corpus (English, Chinese, French) | ||
**Link | **[https://openneuro.org/datasets/ds003643/versions/2.0.1 Link] | ||
**Data paper | **[https://www.biorxiv.org/content/10.1101/2021.10.02.462875v1.abstract Preprint; Scientific Data paper in press] | ||
*Narratives fMRI corpus | *Narratives fMRI corpus (English) | ||
**Link | **[https://openneuro.org/datasets/ds002345/versions/1.1.4 Link] | ||
**Data paper | **[https://www.nature.com/articles/s41597-021-01033-3? Data paper] | ||
*NBD fMRI corpus | *NBD fMRI corpus (Dutch) | ||
**Link | **[https://osf.io/utpdy/ Link] | ||
**Data paper | **[http://lrec-conf.org/workshops/lrec2018/W9/pdf/book_of_proceedings.pdf#page=17 Data paper] | ||
*Alice fMRI (English) | *Alice fMRI (English) | ||
**Link to whole brain | **[https://openneuro.org/datasets/ds002322/versions/1.0.4 Link to whole brain data] | ||
**Link to ROIs | **[https://sites.lsa.umich.edu/cnllab/2016/06/11/data-sharing-fmri-timecourses-story-listening/ Link to ROIs] | ||
**Data paper | **[https://aclanthology.org/2020.lrec-1.15/ Data paper] | ||
*Alice EEG (English) | *Alice EEG (English) | ||
**Link | **[https://deepblue.lib.umich.edu/data/concern/data_sets/bg257f92t Link] | ||
**Data paper | **[https://aclanthology.org/2020.lrec-1.15/ Data paper] | ||
*Appleseed MEG | *Appleseed MEG (English) | ||
**Link | **[https://datadryad.org/stash/dataset/doi:10.5061/dryad.nvx0k6dv0 Link] | ||
**Paper | **[https://elifesciences.org/articles/72056 Paper] | ||
*MASC-MEG | *MASC-MEG (English) | ||
**Link | **[https://osf.io/ag3kj/ Link] | ||
** | **[https://arxiv.org/abs/2208.11488 Preprint] | ||
* | *10 hour within-participant MEG narrative (English) | ||
**Link | **[https://data.donders.ru.nl/collections/di/dccn/DSC_3011085.05_995?1 Link] | ||
** | **[https://www.nature.com/articles/s41597-022-01382-7 Data paper] | ||
*LPP EEG | *Mother of unification studies (MOUS) MEG/fMRI (Dutch) | ||
** | **[https://data.donders.ru.nl/collections/di/dccn/DSC_3011020.09_236?0 Link] | ||
**[https://www.nature.com/articles/s41597-019-0020-y Data paper] | |||
*LPP EEG (26 languages) | |||
**Data collection underway | |||
**[https://aclanthology.org/2020.lincr-1.6/ Data paper] | |||
==Toolkits== | |||
*Eelbrain for EEG/MEG analysis (Python) | |||
*Eelbrain for EEG/MEG | **[https://eelbrain.readthedocs.io/en/stable/ Link] | ||
**Link | **[https://www.biorxiv.org/content/10.1101/2021.08.01.454687v1 Paper] | ||
**Paper | **Tutorial TBD | ||
* | *SPM for fMRI analysis (Matlab) | ||
** | **[https://andysbrainbook.readthedocs.io/en/latest/SPM/SPM_Overview.html SPM Analysis]; read Poldrack first! | ||
*SPM for fMRI | **[https://andysbrainbook.readthedocs.io/en/latest/PM/PM_Overview.html SPM Parametric Modulation] | ||
**Link | **[https://andysbrainbook.readthedocs.io/en/latest/Stats/Stats_Overview.html Stats for fMRI] | ||
*fMRI image viewer (for figures) | |||
**[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes FSLeyes] | |||
**[https://ric.uthscsa.edu/mango/ Mango] | |||
*Nilearn for fMRI (Python) | |||
**[https://nilearn.github.io/stable/glm/index.html#glm GLM analysis] | |||
**[https://nilearn.github.io/stable/auto_examples/00_tutorials/plot_decoding_tutorial.html Decoding] | |||
**[https://nilearn.github.io/stable/plotting/index.html#plotting Plotting Brain Images] | |||
*Neuroscount | |||
**[https://neuroscout.org/ Link] | |||
*More: [https://www.nitrc.org/top/toplist.php?type=downloads NITRC] | *More: [https://www.nitrc.org/top/toplist.php?type=downloads NITRC] | ||
==Relevant Background== | |||
*Papers: | *Papers: | ||
**Naturalistic sentence comprehension | **Brennan, J. (2016). Naturalistic sentence comprehension in the brain. Language and Linguistics Compass, 10(7), 299-313. [https://compass.onlinelibrary.wiley.com/doi/abs/10.1111/lnc3.12198?casa_token=I7XqafbB33gAAAAA%3AnjBW3gi-S8SrssJjV3DL4eakxrvrclLYk7nnPxWdZgxrd6JVOhFjFIkNWKXXig-T3-EpZgFDJWOlz_o Link] | ||
**The revolution will not be controlled | **Hamilton, L. S., & Huth, A. G. (2020). The revolution will not be controlled: natural stimuli in speech neuroscience. Language, cognition and neuroscience, 35(5), 573-582. [https://www.tandfonline.com/doi/pdf/10.1080/23273798.2018.1499946 Link] | ||
**Neurocomputational | **Hale, J. T., Campanelli, L., Li, J., Bhattasali, S., Pallier, C., & Brennan, J. R. (2022). Neurocomputational models of language processing. Annual Review of Linguistics, 8, 427-446. [https://www.annualreviews.org/doi/abs/10.1146/annurev-linguistics-051421-020803?casa_token=JXxXJu6VZ-gAAAAA%3A3r_TXUVNJuMp0rEX9TuEBK-wV4CAwbwdQxFG-EKCm26MZXSw4VXEOinDH0-1m-WdqnqSZFJEnniD&journalCode=linguistics Link] | ||
*Podcasts | *Podcasts | ||
**Brain Inspired podcast | **[https://braininspired.co/podcast/47/ Brain Inspired 047: David Poeppel - Wrong in interesting ways] | ||
**Brain Inspired | **[https://braininspired.co/podcast/53/ Brain Inspired 053: Jonathan Brennan - Linguistics in Minds and Machines] | ||
**[https://braininspired.co/podcast/144/ Brain Inspired 144: Emily Bender & Ev Federenko - Large Language Models] | |||
*Talks: | *Talks: | ||
**[http://nancysbraintalks.mit.edu/video/nancys-ted-talk-neural-portrait-human-mind Nancy | **[http://nancysbraintalks.mit.edu/video/nancys-ted-talk-neural-portrait-human-mind Nancy Kanwisher's TED talk: A Neural Portrait of the Human Mind] | ||
**[https://www.mpi.nl/events/neurobiology-language-key-issues-and-ways-forward/videos Jonathan Brennan: Building bridges between computation and implementation for natural language understanding] | **[https://www.mpi.nl/events/neurobiology-language-key-issues-and-ways-forward/videos Jonathan Brennan: Building bridges between computation and implementation for natural language understanding] | ||
**[https://www.youtube.com/watch?v=YxAlcQKsgJc Laura Gwilliams: Towards a mechanistic account of speech comprehension] | **[https://www.youtube.com/watch?v=YxAlcQKsgJc Laura Gwilliams: Towards a mechanistic account of speech comprehension] |
Latest revision as of 17:35, 25 August 2022
This is a repository that is updated periodically with resources to analyze continuous, naturalistic neuroimaging data with computational tools. It is split into three sections:
- Datasets
- Naturalistic fMRI/EEG/MEG
- Toolkits & Tutorials
- For neuroimaging data analysis
- Relevant Background
- Selected papers, podcasts, talks, course videos, books
Datasets
- LPP-fMRI corpus (English, Chinese, French)
- Narratives fMRI corpus (English)
- NBD fMRI corpus (Dutch)
- Alice fMRI (English)
- Alice EEG (English)
- Appleseed MEG (English)
- MASC-MEG (English)
- 10 hour within-participant MEG narrative (English)
- Mother of unification studies (MOUS) MEG/fMRI (Dutch)
- LPP EEG (26 languages)
- Data collection underway
- Data paper
Toolkits
- Eelbrain for EEG/MEG analysis (Python)
- SPM for fMRI analysis (Matlab)
- SPM Analysis; read Poldrack first!
- SPM Parametric Modulation
- Stats for fMRI
- fMRI image viewer (for figures)
- Nilearn for fMRI (Python)
- Neuroscount
- More: NITRC
Relevant Background
- Papers:
- Brennan, J. (2016). Naturalistic sentence comprehension in the brain. Language and Linguistics Compass, 10(7), 299-313. Link
- Hamilton, L. S., & Huth, A. G. (2020). The revolution will not be controlled: natural stimuli in speech neuroscience. Language, cognition and neuroscience, 35(5), 573-582. Link
- Hale, J. T., Campanelli, L., Li, J., Bhattasali, S., Pallier, C., & Brennan, J. R. (2022). Neurocomputational models of language processing. Annual Review of Linguistics, 8, 427-446. Link
- Podcasts
- Talks:
- Books:
- Course videos: