Actions

CogNeuro: Difference between revisions

Computational Linguistics and Information Processing

No edit summary
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
This is a repository that is updated periodically with resources to analyze continuous, naturalistic neuroimaging data with computational tools. It is split into three sections:  
This is a repository that is updated periodically with resources to analyze continuous, naturalistic neuroimaging data with computational tools. It is split into three sections:  
;Datasets: EEG/MEG/fMRI
;Datasets: Naturalistic fMRI/EEG/MEG  
;Toolkits & Tutorials :For neuroimaging data analysis  
;Toolkits & Tutorials :For neuroimaging data analysis  
;Relevant Background:Selected papers, podcasts, talks, course videos, books  
;Relevant Background:Selected papers, podcasts, talks, course videos, books  
Line 27: Line 27:
*MASC-MEG (English)
*MASC-MEG (English)
**[https://osf.io/ag3kj/ Link]
**[https://osf.io/ag3kj/ Link]
**[https://arxiv.org/abs/2208.11488 Paper]
**[https://arxiv.org/abs/2208.11488 Preprint]
*10 hour within-participant MEG narrative (English)
*10 hour within-participant MEG narrative (English)
**[https://data.donders.ru.nl/collections/di/dccn/DSC_3011085.05_995?1 Link]
**[https://data.donders.ru.nl/collections/di/dccn/DSC_3011085.05_995?1 Link]
Line 39: Line 39:


==Toolkits==
==Toolkits==
*Eelbrain for EEG/MEG
*Eelbrain for EEG/MEG analysis (Python)
**[https://eelbrain.readthedocs.io/en/stable/ Link]
**[https://eelbrain.readthedocs.io/en/stable/ Link]
**[https://www.biorxiv.org/content/10.1101/2021.08.01.454687v1 Paper]
**[https://www.biorxiv.org/content/10.1101/2021.08.01.454687v1 Paper]
**Tutorial TBD
**Tutorial TBD
*Nilearn for fMRI
*SPM for fMRI analysis (Matlab)
**[https://andysbrainbook.readthedocs.io/en/latest/SPM/SPM_Overview.html SPM Analysis]; read Poldrack first!
**[https://andysbrainbook.readthedocs.io/en/latest/PM/PM_Overview.html SPM Parametric Modulation]
**[https://andysbrainbook.readthedocs.io/en/latest/Stats/Stats_Overview.html Stats for fMRI]
*fMRI image viewer (for figures)
**[https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLeyes FSLeyes]
**[https://ric.uthscsa.edu/mango/ Mango]
*Nilearn for fMRI (Python)
**[https://nilearn.github.io/stable/glm/index.html#glm GLM analysis]  
**[https://nilearn.github.io/stable/glm/index.html#glm GLM analysis]  
**[https://nilearn.github.io/stable/auto_examples/00_tutorials/plot_decoding_tutorial.html Decoding]
**[https://nilearn.github.io/stable/auto_examples/00_tutorials/plot_decoding_tutorial.html Decoding]
*SPM for fMRI
**[https://nilearn.github.io/stable/plotting/index.html#plotting Plotting Brain Images]
**Link to tutorial
*Neuroscount
**[https://neuroscout.org/ Link]
*More: [https://www.nitrc.org/top/toplist.php?type=downloads NITRC]
*More: [https://www.nitrc.org/top/toplist.php?type=downloads NITRC]


Line 61: Line 69:
**[https://braininspired.co/podcast/144/ Brain Inspired 144: Emily Bender & Ev Federenko - Large Language Models]
**[https://braininspired.co/podcast/144/ Brain Inspired 144: Emily Bender & Ev Federenko - Large Language Models]
*Talks:
*Talks:
**[http://nancysbraintalks.mit.edu/video/nancys-ted-talk-neural-portrait-human-mind Nancy's Kanwisher's TED talk: A Neural Portrait of the Human Mind]
**[http://nancysbraintalks.mit.edu/video/nancys-ted-talk-neural-portrait-human-mind Nancy Kanwisher's TED talk: A Neural Portrait of the Human Mind]
**[https://www.mpi.nl/events/neurobiology-language-key-issues-and-ways-forward/videos Jonathan Brennan: Building bridges between computation and implementation for natural language understanding]
**[https://www.mpi.nl/events/neurobiology-language-key-issues-and-ways-forward/videos Jonathan Brennan: Building bridges between computation and implementation for natural language understanding]
**[https://www.youtube.com/watch?v=YxAlcQKsgJc Laura Gwilliams: Towards a mechanistic account of speech comprehension]
**[https://www.youtube.com/watch?v=YxAlcQKsgJc Laura Gwilliams: Towards a mechanistic account of speech comprehension]

Latest revision as of 17:35, 25 August 2022

This is a repository that is updated periodically with resources to analyze continuous, naturalistic neuroimaging data with computational tools. It is split into three sections:

Datasets
Naturalistic fMRI/EEG/MEG
Toolkits & Tutorials
For neuroimaging data analysis
Relevant Background
Selected papers, podcasts, talks, course videos, books


Datasets

Toolkits


Relevant Background