Actions

Difference between revisions of "Events"

Computational Linguistics and Information Processing

(215 intermediate revisions by 10 users not shown)
Line 1: Line 1:
== Colloquia ==
+
<center>[[Image:colloq.jpg|center|504px|x]]</center>
  
{{#widget:Google Calendar
+
== CLIP Colloquium ==
|id=lqah25nfftkqi2msv25trab8pk@group.calendar.google.com
 
|color=B1440E
 
|title=CLIP Events
 
|view=AGENDA
 
|height=300
 
}}
 
  
=== 2010 Past Speakers ===
+
The CLIP Colloquium is a weekly speaker series organized and hosted by CLIP Lab. The talks are open to everyone. Most talks are held on Wednesday at 11AM in AV Williams 3258 unless otherwise noted. Typically, external speakers have slots for one-on-one meetings with Maryland researchers.
  
* Roger Levy
+
If you would like to get on the clip-talks@umiacs.umd.edu list or for other questions about the colloquium series, e-mail [mailto:oard@umiacs.umd.edu Doug Oard], the current organizer.
* Earl Wagner
 
* Eugene Charniak
 
* Dave Newman
 
* Ray Mooney
 
  
=== October 20: Kristy Hollingshead: Search Errors and Model Errors in Pipeline Systems ===
+
For up-to-date information, see the [https://talks.cs.umd.edu/lists/7 UMD CS Talks page].  (You can also subscribe to the calendar there.)
  
Pipeline systems, in which data is sequentially processed in stages with the output of one stage providing input to the next, are ubiquitous in the field of natural language processing (NLP) as well as many other research areas. The popularity of the pipeline system architecture may be attributed to the utility of pipelines in improving scalability by reducing search complexity and increasing efficiency of the system. However, pipelines can suffer from the well-known problem of "cascading errors," where errors earlier in the pipeline propagate to later stages in the pipeline. In this talk I will make a distinction between two different type of cascading errors in pipeline systems. The first I will term "search errors," where there exists a higher-scoring candidate (according to the model), but that candidate has been excluded from the search space. The second type of error that I will address might be termed "model errors," where the highest-scoring candidate (according to the model) is not the best candidate (according to some gold standard). Statistical NLP models are imperfect by nature, resulting in model errors. Interestingly, the same pipeline framework that causes search errors can also resolve (or work around) model errors; in this talk I will demonstrate several techniques for detecting and resolving search and model errors, which can result in improved efficiency with no loss in accuracy. I will briefly mention the technique of pipeline iteration, introduced in my ACL'07 paper, and introduce some related results from my dissertation. I will then focus on work done with my PhD advisor Brian Roark on chart cell constraints, as published in our COLING'08 and NAACL'09 papers; this work provably reduces the complexity of a context-free parser to quadratic performance in the worst case (observably linear) with a slight gain in accuracy using the Charniak parser. While much of this talk will be on parsing pipelines, I am currently extending some of this work to MT pipelines and would welcome discussion along those lines.
+
=== Colloquium Recordings ===
 +
* [[Colloqium Recording (Fall 2020)|Fall 2020]]
 +
* [[Colloqium Recording (Spring 2021)|Spring 2021]]
  
Kristy Hollingshead earned her PhD in Computer Science and Engineering this year, from the Center for Spoken Language Understanding (CSLU) at the Oregon Health & Science University (OHSU). She received her B.A. in English-Creative Writing from the University of Colorado in 2000 and her M.S. in Computer Science from OHSU in 2004. Her research interests in natural language processing include parsing, machine translation, evaluation metrics, and assistive technologies. She is also interested in general techniques on improving system efficiency, to allow for richer contextual information to be extracted for use in downstream stages of a pipeline system. Kristy was a National Science Foundation Graduate Research Fellow from 2004-2007.
+
=== Previous Talks ===
 +
* [[https://talks.cs.umd.edu/lists/7?range=past Past talks, 2013 - present]]
 +
* [[CLIP Colloquium (Spring 2012)|Spring 2012]]  [[CLIP Colloquium (Fall 2011)|Fall 2011]]  [[CLIP Colloquium (Spring 2011)|Spring 2011]]  [[CLIP Colloquium (Fall 2010)|Fall 2010]]
  
=== October 27: Matthias Bröcheler ===
+
== CLIP NEWS  ==
  
=== November 3, Stanley Kok: Structure Learning in Markov Logic Networks ===
+
* News about CLIP researchers on the UMIACS website [http://www.umiacs.umd.edu/about-us/news]
 
+
* Please follow us on Twitter @umdclip [https://twitter.com/umdclip?lang=en]
Statistical learning handles uncertainty in a robust and principled way.
 
Relational learning (also known as inductive logic programming)
 
models domains involving multiple relations. Recent years have seen a
 
surge of interest in the statistical relational learning (SRL) community
 
in combining the two, driven by the realization that many (if not most)
 
applications require both and by the growing maturity of the two fields.
 
 
 
Markov logic networks (MLNs) is a statistical relational model that has
 
gained traction within the AI community in recent years because of its
 
robustness to noise and its ability to compactly model complex domains.
 
MLNs combine probability and logic by attaching weights to first-order
 
formulas, and viewing these as templates for features of Markov networks.
 
Learning the structure of an MLN consists of learning both formulas and
 
their weights.
 
 
 
To obtain weighted MLN formulas, we could rely on human experts
 
to specify them. However, this approach is error-prone and requires
 
painstaking knowledge engineering. Further, it will not work on domains
 
where there is no human expert. The ideal solution is to automatically
 
learn MLN structure from data. However, this is a challenging task because
 
of its super-exponential search space. In this talk, we present a series of
 
algorithms that efficiently and accurately learn MLN structure.
 
 
 
=== November 10: Bob Carpenter ===
 
 
 
=== November 24: Ned Talley ===
 

Revision as of 18:21, 6 June 2021

x

CLIP Colloquium

The CLIP Colloquium is a weekly speaker series organized and hosted by CLIP Lab. The talks are open to everyone. Most talks are held on Wednesday at 11AM in AV Williams 3258 unless otherwise noted. Typically, external speakers have slots for one-on-one meetings with Maryland researchers.

If you would like to get on the clip-talks@umiacs.umd.edu list or for other questions about the colloquium series, e-mail Doug Oard, the current organizer.

For up-to-date information, see the UMD CS Talks page. (You can also subscribe to the calendar there.)

Colloquium Recordings

Previous Talks

CLIP NEWS

  • News about CLIP researchers on the UMIACS website [1]
  • Please follow us on Twitter @umdclip [2]